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Abstract 
 

This paper presents a general framework for the doubly fed induction generator(DFIG), apply and analyze the  behavior 
of three estimation techniques, which are the Unscented Kalman Filter (UKF), the High Gain Observer(HGO) and the 
Moving Horizon Estimation(MHE), for parameters estimation of the doubly fed induction generator (DFIG)  driven by 
wind turbine. A comparison of those techniques has been made under different aspects notably, computation time and 
estimation accuracy in two modes of operation of the DFIG, the healthy mode and the faulty mode. The performance of 
the MHE has been clearly superior to other estimators during our experiments.  
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1. Introduction 
 
Nowadays most of generated electricity comes from non-
renewable sources of fuel. These products transfer to the 
atmosphere an important quantities of CO2, and inescapably 
leading to the warming up of the atmosphere [1]. The 
production of the wind energy spreads through the world, 
and significantly, it imposed itself during the past decade 
[2]. Doubly-fed induction generators (DFIGs) are actually 
the most used wind power generators in many countries [3]. 
Therefore, many contributions have been made to the 
inverters and converters usually in DFIG used in the power 
electronics domain [4]. A doubly fed induction generator 
model for transient stability analysis has been proposed in 
[5], in which authors focused their study on the control loops 
of instantaneous response. In [6], authors have been 
proposed some robust observers to estimate states and 
actuator faults for different class of linear and nonlinear 
systems at the same instant. Though systems are becoming 
more and more complex, DFIG can be subject by many 
types of faults [7], diagnosis and faults estimation issues 
have become primordial to ensure a good supervision of 
systems and guarantee the safety of materials and operators 
(humans) [8]. A survey based on current sensor fault 
detection and isolation and control reconfiguration current 
for doubly fed induction generator has been proposed by [9]. 
Studies led by [10], have contributed to an adaptive 
parameter estimation algorithm used for estimating the rotor 
resistance of the DFIG, however, the others parameters were 
assumed to be constant. To improve the Extended Kalman 
Filter (EKF), a new nonlinear filtering algorithm named the 
Unscented Kalman Filter (UKF) has been developed in [11]. 
Widely used in some fields, UKF has been found in several 

studies such as training of neural networks [12], multi-sensor 
fusion for instance. This paper investigate the usage of the 
Unscented Kalman Filter UKF, High Gain Observer (HGO) 
and the Moving Horizon Estimator (MHE) to estimate the 
dynamic states and electrical parameters of the wind turbine 
system. These estimates can be used to enhance the 
performance of Doubly Fed Induction Generator in power 
systems, for rotor and stator resistances faults in the 
circumstances where internal states will be involved in a 
control design [3] and the acquisition of internal states, 
which are relatively difficult to get can realized from the 
dynamic state estimation and for monitoring purposes. The 
paper is organized as follows: in section II, the mathematical 
model for DFIG is presented, followed by the description of 
estimation algorithms in section III. The results of the 
parameter estimation tests are presented in section IV. 
Finally section V gives the conclusions.  
 
 
2.  Mathematical Model for DFIG 
 
In this section, we deal with the mathematical modeling of 
the DFIG-based wind energy system, we will only describe 
the wind turbine (also called drive train), and the 
asynchronous generator (also called induction generator) 
because this paper focuses on estimating of the parameters 
and dynamic states of the DFIG Figure1. 
 Two frames of reference are used in this model: stator 
voltage (d - q) reference frame, and mutual flux (d - q) 
reference frame. And in Table 4 and Table 5, all parameters 
and constants are given. 
 
2.1. Modeling of the wind turbine 
From the wind, the power extracted can give the mechanical 
torque. The energy from the wind is extracted from the wind 
turbine and converted into mechanical power [14]. The wind 
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turbine model is based on the output power characteristics, 
as Equations (1) and (2), [15]. 
 

 
Fig. 1. Configuration of DFIG-based wind turbine system [13] 

 
 

	  
Pm =Cp (λ,β )12ρAνw

3 =Cp (λ,β )Ew                                    (1) 

 

 
λTS =

Rωt

νw

                                                                 (2) 

 
 Where the aerodynamic extracted power is Pm, which 
depends on CP, the efficiency coefficient. The air density ρ, 
the turbine swept area A, and the wind speed νw. The kinetic 
energy contained in the wind at a particular wind speed is 
given by Ew . The blade radius and angular frequency of 
rotational turbine are R and wt respectively. CP(λ; β) the 
efficiency coefficient depends on tip speed ratio λTS and 
blade pitch angle β ,determines the amount of wind kinetic 
energy that can be captured by the wind turbine system [13]. 
CP(λ; β)  can be describe as: 
 

	  
Cp (λ,β ) =0.5(116

λi

−0.4β −5)e−21/λi                                   (3) 

 
 Where 
 

	  
1
λi

=
1

λTS +0.08β −
0.035
β3 +1                                                   (4) 

 
2.2. Modeling of the Asynchronous Generator 
For the induction generator, the Park model is the model that 
is commonly used [16]. After applying the synchronously 
rotating reference frame transformation to the stator and 
rotor fluxes equations of the generator, the following 
differential equations describe the dynamics of the rotor and 
stator fluxes [17]: 
 

   

!Φdr = wb(vdr + (ws −wr )Φqr − Rridr )
!Φqr = wb(vqr − (ws −wr )Φdr − Rriqr )
!Φds = wb(vds +wsΦqs − Rsids )
!Φqs = wb(vqs −wsΦds − Rsiqs )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

                              (5) 

 
 Where ws = 1 is the synchronous angular speed in the 
synchronous frame and wb = 2πf rad/s is the base angular 
speed, with f = 60Hz. With additional variables stator-rotor 

mutual flux Φdm and Φqm, rotor current idr and iqr and stator 
current ids and iqs can be expressed as: 
 

 

idr =
Φdr −Φdm

Llr

iqr =
Φqr −Φqm

Llr

⎧

⎨

⎪
⎪

⎩

⎪
⎪

                                                              (6) 

 

 

ids =
Φds −Φdm

Lls

iqs =
Φqs −Φqm

Lls

⎧

⎨

⎪
⎪

⎩

⎪
⎪

                                                              (7) 

 
 Where 
 

  

Φdm = Lad (
Φdr

Llr

+
Φds

Lls

)

Φqm = Laq (
Φqr

Llr

+
Φqs

Lls

)
                                                     (8) 

 
are the stator-rotor mutual flux. 
 Where constants Lad and Laq are the (d-q) mutual flux 
factors, expressed as: 
 

	 

Lad = Laq =
1

1
Lm

+
1
Lls

+
1
Llr

                                                   (9) 

 
 The relationship between mechanical torque Tm, 
electrical torque Te and rotor speed wr can be shown by the 
following differential equation, 
 

	   
!wr =

1
2H

(Tm −Te − Fwr )                                                     (10) 

 
 Where constant F is the friction factor and H is the 
generator inertia, and Te, the electrical torque which can be 
expressed as: 
 

 
Te =Φdsiqs −Φqsids                                                               (11) 

 
 These equations are derived in [4] and all parameters are 
defined in per unit based on the generator ratings and 
synchronous speed. 
 
 
3. Estimation algorithms 

 
3.1.  High Gain Observer[18] 
This observer class is applied for nonlinear system classes of 
the form (12). Its applications are so large [19]. We briefly 
present the developed survey in [20] that points up the 
synthesis of observers adapted to the observable nonlinear 
systems. Consider the following nonlinear system: 
 

   

!x = f (x)+ g(x)u
y =  h x( )

⎧
⎨
⎪

⎩⎪
                                                             (12) 
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 Where   x ∈ Rn ,u ∈ Rm , y ∈ Rs  
 First, the system (12) must be uniformly locally 
observable, and then it will be possible to make the variable 
change z = Γ(x) that will transform the system (12) in the 
following form: 
 

   

!z = Az+ϕ (u,z)
y =  Cz

⎧
⎨
⎩

                                                               (13) 

 
The observer must satisfy the following theorem [20]: 

i.  The function ϕ  is globally Lipschitz uniformly to 
u. 

Let  

	  

K =

K1

!
K p

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 an adequate size matrix such as, 

for every Ki block, the matrix  
Ak - KkCk should give all its eigenvalues with negative real 
part: 
Let’s suppose that there exists two integer sets 

	   {σ 1,!,σ n ∈ Z}  and 	   {δ1 >0,!,δp >0∈ N *}  such as:  

ii. 	   σ µk+v =σ µk+v−1 +δr ,k =1,!, p,v =1,!,ηk −1  

iii. 
	    

∂ϕ i

∂z j

≠0⇒σ i !σ j ,i, j =1,!,n, j ≠ µk ,k =1,…, p  

So,   

	   
!̂z = Aẑ+ϕ ( ẑ,u)− Sθ

−1K(Cẑ − y)                                         (14) 
 
is an exponential observer for the system (13) as well. 
 And there exists T1 such as, for all T, 0 < T < T1. 
 With, 

 

	   

S(S ,δ) =
Sδ1Δ(Sδ1 )

!

SδpΔ(Sδ p

)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 

	   

Δθ (S) =

1
S
!

Sηθ −1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 
 By operating a reverse variable change for coming back 
to the initial nonlinear system, the observer for the system 
(12) is given by: 
 

	   
!̂x = f ( x̂)+ g( x̂)u− ∂Γ

∂x̂
( x̂(t))

⎛

⎝
⎜

⎞

⎠
⎟

−1

Sθ
−1(h( x̂)− y)                   (15) 

 
  x̂ : Estimated value of x. 
Γ: An application Rn → Rn . 
 
 With, 

 

	  

Γ = [h1, Lf h1, Lf
2 h1,..., Lf

δ1h1,h2, Lf h2, Lf
2 h2

,..., Lf
δ2h2,...,hp , Lf hp , Lf

2 hp ,..., Lf
δp hp ]T

 

 
 And 

 
Lf
δk  is the Lie  δk

i  derivative. 

 P: Number of outputs. 
 And Sθ satisfies the following Lyapunov relation: 
 

	  
!S = −θSθ − AT Sθ − Sθ A+CTC =0                                      (16) 

 
 In [20], the demonstration is done. 
 
3.2. The Unscented Kalman Filter 
The Unscented Kalman Filter (UKF) has been essentially 
designed for the state estimation problems, and applied in 
some nonlinear control applications [11]. The Unscented 
Kalman Filter (UKF) compensates for approximation issues 
of the Extended Kalman Filter (EKF). A Gaussian random 
variable represents the state distribution, which is specified 
using a set of sample points chosen very carefully [12]. The 
unscented transformation (UT) is a method to estimate or 
calculate statistics of a random variable which is subjected to 
a nonlinear transformation [11]. In stochastic estimation 
problems, a common assumption usually is used which 
underline the fact that the process and measurement noise 
terms are additive, as in: 
 

	  

xk = f (xk−1,uk−1)+wk−1

yk = h(xk ,uk )+ vk

                                                 (17) 

 
 The dimension of the sigma-points is the same as the 
state vector, that is to say L = nx. The UKF is recursively 
executed, starting with the assumed initial conditions 	  x̂0  and 
P0. First a set of sigma-points are generated from the prior 
state estimate 	  x̂k−1  and covariance Pk−1 at each discrete-time 
step, as in: 
 

	  
χ k−1 = x̂k−1 x̂k−1 + L+λ Pk−1 x̂k−1 − L+λ Pk−1

⎡
⎣⎢

⎤
⎦⎥  

(18) 

 
For the next point, each sigma point is passed through 

the state prediction function f that is nonlinear. 
 

	  χk ,k−1
( i) = f (χk−1

( i) ,uk−1), i =0,1,2,...,2L                               (19) 
 

	  χk ,k−1  means that this is the predicted value of the sigma-
point based on the information from the prior time step. 
Sigma-points transformed, the post transformation mean and 
covariance are computed using weighted averages of the 
transformed sigma-points [21], 
 

	  
x̂k ,k−1 = ηi

m

i=0

2L

∑ χk ,k−1
( i)                                                            (20) 

 

	  
Pk ,k−1 =Qk−1 + ηi

c (χk ,k−1
( i) − x̂k ,k−1)

i=0

2L

∑ (χk ,k−1
( i) − x̂k ,k−1)T             (21) 
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where 	  η0
m = λ / (L+λ)  and 	  η0

c = λ / (L+λ)+1−α2 +β . The 
measurement noise is also omitted from the observation 
function, as for the prediction as in: 
 

	  ψk ,k−1
( i) = h(χk ,k−1

( i) ,uk )                                                           (22) 
  
 Where is a matrix of output sigma-points. Output sigma-
points are used to calculate output covariance matrix, the 
predicted output and cross-covariance by using: 
 

	  

ŷk ,k−1 = ηi
m

i=0

2L

∑ ψk ,k−1
( i)

Pk
yy = Rk + ηi

c (ψk ,k−1
( i) − ŷk ,k−1)

i=0

2L

∑ (ψk ,k−1
( i) − ŷk ,k−1)T

Pk
xy = ηi

c (χk ,k−1
( i) − x̂k ,k−1)

i=0

2L

∑ (ψk ,k−1
( i) − ŷk ,k−1)T

            (23) 

 
 Due to the additive noise assumption, R is added to the 
output covariance matrix. For calculating the Kalman gain 
matrix K , covariance matrices are used, using: 
 

	  Kk = Pk
xy (Pk

yy )−1                                                                (24) 
 
 And then this Kalman gain matrix is used to update 
covariance estimates and the state, as in: 
 

	  

x̂k = x̂k ,k−1 + Kk ( yk − ŷk ,k−1)

Pk = Pk ,k−1 − Kk Pk
yy Kk

T
                                            (25) 

 
 With yk, the measurement vector,   x̂k  is the a posteriori 
state and Pk is the covariance estimates 
 
3.3. The Moving Horizon Estimation[22] 
The moving horizon estimation is a powerful means of 
estimating the states, and having in particular the possibility 
to constrain the outputs, states and noises. We can be 
described it as a least-squares optimization that leads to a 
states’ estimation and working with a limited amount of 
information. Its particularity is to avoid the recursive manner 
characteristic of the extended Kalman filter. Under different 
approaches, several researchers [23,24,25,26] studied it, 
however presenting many similarities. The moving and full 
state estimations almost follow the same steps. In the 
moving state estimation, variables can be handled contrary 
to the full state estimation. In the full state estimation, at 
current time k, all variables from initial time n = 0 to n = k 
are used in the calculation. With a horizon H, the moving 
state estimation uses in the calculation only the concerned 
variables (, measured outputs, manipulated inputs and 
estimated states) from n = k + 1 − H to n = k, a moving 
vectors collect them. First of all, consider the full state 
estimation problem. Let assume that the process can be 
represented by the following continuous-time model: 
 

   !x(t) = f (x(t),u(t))+Gw(t)                                                (26) 
 
 Where wk is the control noise.  
 Where the Gaussian noise of zero mean is w. We can 
describe the measured outputs y  by the discrete-time model 

 

  
yk  =  h xk( )  + vk                                                               (27) 

 
 Where vk is the observation noise.  
 The equivalent linear discrete model is given by: 
 

	  xk+1  =  Axk  +  Buk  +  Gwk                                                (28) 
 
 Where the matrices A and B are the Jacobian matrices 
with respect to f in relation to xk and uk respectively. The 
measurement model is linearized as: 
 

	 yk+1 =Cxk+1 + vk+1                                                               (29) 
 
 Where the matrix C is the Jacobian matrix of h with 
respect to xk. In the full state estimation problem, we have to 
minimize the following criterion with respect to the 
sequence of noises 	  w0,…,wk−1{ }  and to the initial state x0, 

and then the states   x̂i  are obtained by using equation (28).  
 

	  
Jk = (x0 − x̂0)T Π0

−1(x0 − x̂0)+ (vi+1
T R−1vi+1 +wi

TQ−1wi )
i=0

k−1

∑     (30) 

 
The weighting matrices	Π0

−1 ,	 Q
−1 and	 R−1  respectively 

symbolize the initial estimation, the confidence in the 
dynamic model and the measurements. The main 
disadvantage of full state estimation is that during the 
computation we notice the size of the optimization problem 
grows as time increases, and would likely cause a failure in 
the optimization. The favorable solution to this increasing 
size is to set the problem according to a moving-horizon 
approach. 
Let us consider the problem of moving state estimation. The 
criterion (30) is split into two parts [24, 25]: 
 

	  
Jk = Jk−H + (vi+1

T R−1vi+1 +wi
TQ−1wi )

i=k−H

k−1

∑ = Jk−H + J mhe         (31) 

 
 The second term Jmhe of the criterion (31) depends on the 
sequence of noises 	  wk−H ,…,wk−1{ } and on the state xk-H.  

Assume that k > H and set the optimized criterion: 
 

	  
Jk−H

* = min
x0,w0 ,…,wk−H−1

Jk−H                                                         (32) 

 
 And then, in the full optimized criterion becomes: 
 

	  
Jk

* = min
x0,w0 ,…,wk−1

Jk                                                                  (33) 

	  
= min

z ,wk−H ,…,wk−1
(vi+1

T R−1vi+1 +wi
TQ−1wi )

i=k−H

k−1

∑
⎡

⎣
⎢

⎤

⎦
⎥+ Jk−H

* (z)            (34) 

 
 Where z is the arrival state xk−H based on the optimized 
variables 	  wk−H

* ,…,wk−H−1
*{ }  and x0. 

 In practice, it is very complicated and almost impossible 
to really minimize   Jk−H (z)  when k becomes large enough as 
this would be a full estimation problem again. The 
recommend solution is to retain the previous values of the 
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optimized criterion   Jk
*  obtained by moving horizon 

estimation denoted by   Jk
mhe(z)  along time k and to 

approximate   Jk−H (z)  as : 
 

	  Jk−H (z) ≈ (z − x̂k−H
mhe )T Πk−H

−1 (z − x̂k−H
mhe )+ Jk−H

mhe (z)      (35) 
 
 Where   x̂k−H

mhe   is the state estimated by moving horizon 
observer at time (k - H). Under these assumptions, the 
criterion (31) becomes: 
 

	  

Jk = (vi+1
T R−1vi+1 +wi

TQ−1wi )+
i=k−H

k−1

∑

+(z − x̂k−H
mhe )T Πk−H

−1 (z − x̂k−H
mhe )+ Jk−H

mhe (z)  
(36) 

  
 The discrete Riccati equation we used for the covariance 
matrix of the Kalman filter is called to update Πk : 
 

	 

Πk = AΠk−1AT +GQGT −

−AΠk−1C
T CΠk−1C

T + R⎡
⎣

⎤
⎦
−1

CΠk−1
T AT

                               (37) 

 
 With Π0 given. The Moving horizon estimation 
algorithm is described by the diagram in Figure (2) 
 
 

 
Fig. 2. MHE algorithm 
 
 
4. Numerical results 

 
In this section, the performances of the proposed observers 
are illustrated in simulation. Observers’ algorithms have 
been implemented in MATLAB/SIMULINK software. The 
Doubly-Fed Induction Generator system states which have 
been used for estimation are expressed into a vector x, this 
vector includes as parameters to estimate the stator and rotor 
resistances, as follows: 
 

 
x = Φds Φqs Φdr Φqr Rs Rr

⎡
⎣⎢

⎤
⎦⎥

T

                         (38) 

 

 The inputs of the system are the rotor angular electrical 
speed, stator and rotor voltages, as in: 
 

 
u = vds vqs vdr vqr ωr

⎡
⎣⎢

⎤
⎦⎥

T

                                       (39) 

 
 The d and q axis of stator and rotor currents and the 
mechanical torque constitute the measurements of the 
systems, 
 

 
y = Tm ids iqs idr iqr

⎡
⎣⎢

⎤
⎦⎥

T

                                        (40) 

 
 Table 8 shows a comparison of the running time of High 
Gain Observer (HGO), the Unscented Kalman Filter (UKF), 
and the Moving Horizon Estimation (MHE) for the DFIG 
system. The High Gain observer being the fastest among the 
three methods under various modes especially the healthy 
mode which represents a healthy DFIG and the faulty mode 
where stator and rotor resistance would have changed value 
during the operation of the DFIG. Tables 7 and 6 gives the 
parameters of UKF and MHE only. For the UKF, the 
primary, secondary, and tertiary scaling parameters α, β and 
κ are chosen as 1, 2, and 0 respectively. 
 Figure 3 shows the generated estimates of the rotor and 
stator resistances by the HGO, UKF and the MHE in the 
healthy mode of working of the DFIG. Nevertheless, Figure 
4 shows the generated estimates of the rotor and stator 
resistances by the HGO, UKF and the MHE in the faulty 
mode of working, let us mention that faulty mode is simply a 
mode where the DFIG undergoes a fault on its stator and/or 
rotor resistances during the operation. We just simulated 
those scenarios to appreciate the estimation performance of 
different observers in particular the HGO, UKF and MHE 
for process monitoring or diagnostics purposes. We can 
observe that the estimates by the MHE converges to the 
actual parameters in fewer time compared to the HGO and 
UKF. In Table 8, we notice the total computation time to 
obtain an estimate for the HGO algorithm is about 1.200 
seconds, for the UKF algorithm is also about 1.190 seconds 
while the MHE algorithm took 152.978 seconds to estimate 
the parameters in the normal mode of working, and in the 
faulty mode, we have about 1.901 seconds, 1.666 seconds 
and 154.234 seconds for those observers respectively. We 
can conclude that when the asynchronous machine has a 
stator or rotor resistance fault, the estimation time increases 
.The reason the MHE algorithm takes longer to make an 
estimate is that in simulation, the optimization of the 
objective function, through a nonlinear programming 
algorithm has been performed at each time step, in this case 
study the nonlinear programming algorithm used is the 
sequential quadratic programming in the MATLAB in-built 
function fmincon. For the HGO we can underline this, a big 
value of θ leads to consolidate the linear part and to 
guarantee the stability of the nonlinear part through the fact 
that ϕ  is imposed globally Lipschitz in relation to x [27]. If 
θ are big enough, the time of convergence decreases, but the 
observation becomes extremely sensitive to the 
measurement noises. A small value of θ leads to the reverse 
effect obviously. In comparison with the extended Kalman 
filter, this observer contains a lot less of setting variables 
that facilitates its optimization. Besides the number of 
equations to solve are a lot weaker and it decreases the time 
of calculation considerably. To know that the number of 
differential equations to solve for the Kalman filter is of 
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n+ n(n+1)

2  such as n is the size of observation vector, 

when that number is n for the High gain observer [18], for 
our experiment the value of the gain is θ = 27, on the other 
hand, the UKF algorithm has to handle 2L + 1 sigma points 
and associated weights to represent state of the system. 
Tables 1 and 2 show the standard deviation and the variance 
of the estimation error. The comparison of these observers 
can be made by finding the mean squared error (MSE) value. 
The MSE can be evaluated as: 
 

	  
MSE =

1
N × n

(θi −θ̂i )
2

i=1

N

∑                                                 (41) 

 
 Where N is the number of time steps, n is the dimension 
of state vector, θi is the simulated value and   θ̂i  is the 
estimated value from the filters. Table 3 shows a comparison 
of the three observers by finding the mean squared error in 
the healthy and the faulty mode of operation of the DFIG 
and we can notice that generally, the mean squared error of 
states and parameters in faulty mode is relatively greater 
than those in the healthy mode because of the fault occurring 
suddenly during the operation, but we can always see the 
high performance of the Moving Horizon Estimation on the 
others observers. 

 

	
 

a) Rotor resistance estimation 

	
b) Stator resistance estimation 

Fig. 3. Parameters estimation in a healthy mode with HGO, UKF and MHE 
 
To verify the robustness, we performed parametric variation 
on the observer in relation to the identified values. Figures 5 
and 6 show the responses obtained when a rotor inductance 
variation of +50% and -50% is considered for the observer 
test. The robustness of the observers’ scheme with respect to 
this parameter changes is clearly shown. In Figures 5 and 6, 
it is clearly shown that a +50% and -50% rotor inductance 
variation generates a high statistical difference on rotor and 
stator resistances for the Unscented Kalman Filter. For the 
High Gain Observer, that variation is much more felt on the 
rotor resistance on the both figures. Incontestably the 
Moving Horizon Estimation seems remain insensitive to the 
parametric variations but it is not so, it is just that the 
statistical difference generated is weak enough compared to 

others. From these responses, we can conclude that the rotor 
inductance changes do not affect the performance of the 
Moving Horizon Estimation considerably, but in regard to 
the other observers, the changes disturb their performance a 
lot as shown in the figures and that the MHE scheme is 
robust enough under parametric uncertainties. 
 
Table 1. General statistics of the three Observers (Healthy 
Mode) 

 Std(HGO)×10−5 Std(UKF)×10−5 Std(MHE)×10−5 
Rs 350 7450 57.75 
Rr 7.29 3940 41.38 

 Variance(HGO)×10−5 Variance(UKF)×10−5 Variance(MHE)×10−5 
Rs 1.26 550 0.033 
Rr 0.0053 160 0.017 
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a) Rotor resistance estimation 

	
b) Stator resistance estimation 

Fig 4. Parameters estimation in a faulty mode with HGO, UKF and MHE 
 
  
Table 2. General statistics of the three Observers (Faulty Mode) 

 Std(HGO)×10−4 Std(UKF)×10−4 Std(MHE)×10−4 
Rs 25 8208 270 
Rr 4.86 278 26 

 Variance(HGO)×10−5 Variance(UKF)×10−5 Variance(MHE)×10−5 
Rs 0.62 6737 0.74 
Rr 0.024 77.47 0.702 

 
 
Table 3. MSE values of nonlinear observers: HGO, UKF and MHE are compared 

 HGO UKF MHE 
 Healthy Faulty Healthy Faulty Healthy Faulty 

Rs 4.73E − 06 8.02E − 06 8.66E − 04 9.65E − 04 1.11E − 07 1.27E − 07 
Rr 1.77E − 09 1.79E − 05 9.36E − 05 1.14E − 04 5.71E − 08 7.33E − 08 
Φds 5.70E − 04 6.31E − 04 9.02E − 05 9.23E − 05 21.0E − 04 11.0E − 04 
Φqs 1.93E − 06 2.10E − 06 1.10E − 16 1.10E − 16 39.0E − 04 27.0E − 04 
Φdr 2.08E − 08 16.00E − 04 6.47E − 06 6.87E − 06 246E − 04 210E − 04 
Φqr 1.73E − 10 4.81E − 06 1.10E − 06 1.10E − 06 67.0E − 04 70.0E − 04 
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Fig. 5. Robustness test. Rotor inductance variation (+50%) 

	

 
Fig. 6. Robustness test. Rotor inductance variation (-50%) 
 
 

5. Conclusion 
 

In this paper, a general framework for the doubly fed 
induction generator has been presented in order to carry out 
a dynamic estimation of states and parameters of the DFIG. 
The DFIG parameters are largely influenced by different 
factors (for instance, temperature, magnetic saturation and 
eddy current...) that is why it is necessary to develop 
techniques to estimate the changes of parameters. The 
proposed techniques are performed with High Gain Observer 
(HGO), Unscented Kalman Filter (UKF) and Moving 
Horizon Estimation algorithms using noisy measurements. A 
comparison of the three estimation techniques has been 

made under different aspects notably, computation time and 
estimation accuracy, in two modes of operation of the DFIG, 
the healthy mode and the faulty mode. The MHE estimation 
technique has significantly lower estimation error and 
converges with fewer samples time than the HGO and the 
UKF. Whatever the mode of functioning, the simulation 
results showed that a good standard of performance could be 
obtained even in the presence of measurement noise. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  

 
______________________________ 
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Appendix 
 
Table 4. Parameters of the DFIG 
Parameters Values 
Rated active power (Ps)/(MW) 1.5 
Rated voltage (line to line) (Vs)/(V ) 575 
Rated DC-link voltage (Vdc)/(V ) 1200 
Number of poles 4 
frequency(f)/(Hz) 60 
Stator resistance (Rs)/(pu) 0.00707 
Rotor resistance (Rr)/(pu) 0.005 
Stator leakage inductance (Ls)/(pu) 0.171 
Rotor leakage inductance (Lr)/(pu) 0.156 
Magnetizing inductance (Lm)/(pu) 2.9 
DC-link capacitance (C)/(F) 0.04 
 
Table 5. Parameters of the wind turbine 
Parameters Values 
Rated wind speed (vw)/(m.s−1) 12 
Number of blade 3 
Radius of blade (R)/m 35.25 
Gearbox gain (G) 91 
Moment of inertia (Jeq)/(kg:m2) 1000 
Viscosity factor (feq)/(N.m.s.rad−1) 0.0024 
 
Table 6. MHE parameters 
Parameters Values 
Weight matrix G eye(6) 
Covariance matrix P0 3eye(6) 
Covariance matrix Q 0.5eye(6) 
Covariance matrix R eye(5) 
Length horizon H 10 



Steve Alan TALLA OUAMBO, Alexandre Teplaira BOUM and Adolphe MOUKENGUE IMANO/ 
Journal of Engineering Science and Technology Review 11 (2) (2018) 38-47 

	 47 

Initial guess  [0; 0:5; 0:5; 1; 0:02; 0:02] 
 
Table 7. UKF parameters 

 
 
Table 8. Running time of the three observers for the DFIG (seconds) 

 

Parameters Values 
Covariance matrix P0 eye(6) 
Covariance matrix Q 10−2diag([111110−410−4]) 
Covariance matrix R 10−2diag([11111]) 
Initial guess [0; 0:5; 0:5; 1; 0:02; 0:02] 

 HGO UKF MHE 
Healthy mode 1.200 1.190 152.978 
Faulty mode 1.901 1.666 154.234 


