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Abstract 
 

Image restoration is an important area in the field of image processing and analysis. This process is aimed at improving 
the quality of images with noise in image acquisition to restore the key and minor details of the original images. Impulse 
and Gaussian white noises are common types of noise. Traditional image restoration models cannot effectively remove 
impulse noise due to the strong randomness the latter. Therefore, impulse noise removal in images requires a 
considerable improvement. A variation model based on data-driven tight frames was proposed to recover the original 
image from the observed image with mixed Gaussian and impulse noise. First, the data-driven tight frame was imbedded 
in the variation model as a differential operator. Second, the exact solution of the variation model was obtained using 
augmented Lagrangian method-accelerated proximal gradient (ALM-APG) algorithm. Finally, the validity and 
practicability of the model and algorithm were verified through numerical experiments. Results demonstrate that (1) the 
ALM-APG algorithm has the advantages of low computational complexity and rapid convergence; (2) the variation 
model based on data-driven tight frames can effectively remove mixed Gaussian and impulse noise in images, and the 
peak signal-to-noise ratio (PSNR) value of the algorithm is higher than 30; (3) the proposed model demonstrates better 
image restoration effect than other image restoration models, and the PSNR has been increased by at least 10%. The 
proposed model can effectively remove the mixed Gaussian and impulse noise in images by providing a new method for 
removing such noise. 
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1. Introduction 
 
Image processing has been a basic area in the field of 
computer vision with the development of artificial 
intelligence. In image acquisition, storage, or transmission, 
image pixels are likely to be polluted by various types of 
noise, such as Gaussian, impulse, Poisson, and mixed. Image 
analysis will be meaningless if noise is not eliminated in 
advance. Therefore, restoring an original image from the 
observed image has become the foundation of image 
processing. Additive white Gaussian and impulse noises are 
the most common types of image noise. Impulse noise has 
two categories, namely, salt-and-pepper and random-valued 
impulse noises, which are generally caused by data loss, 
memory defects, and deleted image transmission. For the 
salt-and-pepper noise in grayscale images, each destroyed 
pixel is replaced with 0 or 255 at a certain probability. For 
the random noise in a grayscale image, each destroyed pixel 
is replaced by a random value in 	  0,!,255{ } . 

The studies of removing additive Gaussian white and 
impulse noises have been conducted extensively, and 
numerous mature models and algorithms have been 
developed. However, removing mixed Gaussian and impulse 
noise should be further studied. The removal of mixed 

Gaussian and impulse noise is challenging given different 
properties and characteristics. Scholars have attempted to 
remove the mixed Gaussian and impulse noise in gray 
images by using variation, topological geometry, and 
combination models [1-6]. However, the peak signal-to-
noise ratio (PSNR) value of image restoration is generally 
lower than 30. This result shows that the existing image 
restoration methods cannot adapt to the randomness of 
mixed Gaussian and impulse noise. Therefore, establishing 
an image restoration model on the basis of the characteristics 
of noise data is necessary to overcome the randomness of 
noise and effectively remove mixed Gaussian and impulse 
noise. An image restoration model, which can remove the 
mixed Gaussian and impulse noise, combined with the data-
driven tight frame was proposed. This model is expected to 
improve the image restoration capability of mixed Gaussian 
and impulse noise and provide a reference for image 
restoration in engineering application. 
 
 
2. State of the Art 
 
Scholars have investigated the removal of mixed Gaussian 
and impulse noise in images. The algorithms of removing 
mixed Gaussian and impulse noise can be divided into three 
categories, namely, pixel domain- [7-14], regularization- 
[15-20], and patch-based algorithms [21-23]. Pixel domain-
based algorithms generally remove mixed Gaussian and 
impulse noise through spatial nonlinear filtering and/or 
probabilistic/statistical technology. Regularization-based 
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algorithms consider denoising an optimization. The regular 
term of image processing can be a total variation model or 

	 L1  norm of wavelet frame coefficient. Patch-based 
algorithms realize image processing through a similarity 
with patch, therefore leading to high computational 
complexity and computation cost. In addition, the three 
algorithm categories are based on a variation model, which 
is the most extensively used model in image restoration. 
Rudin-Osher-Fatemi (ROF), which is a common variation 
model, can effectively restore images with segment time-like 
binary images (text and bar codes). Other categories of 
variation models based on the ROF model have been derived 
[15-23]. The variation model [22-27] based on tight wavelet 
frame has been successfully applied to image restoration. 
Study results show that the variation model based on tight 
wavelet frame has better effects than other variation models, 
such as the ROF, given the multi-resolution structure and 
redundancy of wavelet frames. On the basis of damaged 
information in images, Yan et al. designed an image 
restoration method by using blind information and 
successfully removed mixed Gaussian and impulse noise in 
images. However, this method was not extensively used 
given its high computational complexity [6]. Gong et al. 
developed a variation model based on tight wavelet frame 
and applied this model to image restoration with unknown 
noise. The processing effect for mixed Gaussian and impulse 
noise was unsatisfactory because a certain type of fixed 
noise was disregarded [27]. Shen et al. presented an image 
restoration method based on tight wavelet frame and tensor 
product and applied this model to gray image restoration 
with mixed Gaussian and impulse noise. However, the 
denoising effect still requires improvement because the 
method was not adaptable to image data [21]. Dong et al. 
constructed a 3D tight wavelet frame for 3D image 
restoration. The frame was unsuitable for 2D image 
restoration considering the particularity of a 3D tight 
wavelet frame [15]. Yang et al. used an image restoration 
method based on a variation model to remove the mixed 
Gaussian and impulse noise in 3D images and applied the 
method to image restoration with general noise. However, 
this method depends on the topological structure of images, 
and the denoising capability was low for general image data 
[23]. Wang et al. designed a tight wavelet frame for image 
restoration and constructed an image restoration model to 
remove Poisson and mixed Poisson-Gaussian noises. The 
processing capability for other types of noise is weak, 
although this method has effectively removed Poisson and 
mixed noises [22]. In addition, Cai et al. [25-26] established 
a correlation between wavelet frame and variation model, 
thereby establishing a theoretical basis for the superiority of 
variation model based on wavelet framework to several 
other variation models. Specifically, the variation model 
based on wavelet framework can adaptively select 
differential operators in various regions of a given image in 
accordance with the singularity order of potential solutions. 
Owing to the idea of tight wavelet frame, Cai et al. [24] 
constructed a data-driven tight frame based on the features 
of an image data structure. This frame can reconstruct 
images more accurately than the previous models.  

On the basis of the above analysis, the processing 
capability of the image restoration methods for a certain type 
of noise is weak, although these methods, which remove the 
general unknown noise in images, can address many types of 
noise. Moreover, several shortcomings, such as high 
computation cost and dependence on image data, have been 
observed. The processing capability for other types of noise 

is weak and can hardly be extended to the studies of 
removing unknown noises, although the image restoration 
method for removing a fixed type of noise in images can 
significantly remove a specific noise. On the basis of the 
above analysis, to improve the denoising effect of the image 
restoration method and reduce the computation cost, a 
variation model based on data-driven tight frames was 
established to remove the mixed Gaussian and impulse noise 
in grayscale images. The fitting item of the variation model 
is composed of 	  L1-L2  norm term, and the smooth terms 

consist of the 	 L1  norm items that contain data-driven tight 
frames. The exact solution of the variational model was 
obtained through augmented Lagrangian method-accelerated 
proximal gradient (ALM-APG) algorithm. The proposed 
model and algorithm were verified through numerical 
experiments and extended to the study of removing general 
unknown noises. This study is expected to provide a 
reference for image restoration in engineering application. 

The remainder of this study is organized as follows. 
Section 3 describes the variation model and data-driven tight 
frames and discusses the process of constructing the image 
restoration variation model based on data-driven tight frames 
and the ALM-APG algorithm for solving the model. Section 
4 verifies and analyzes the image restoration effect of the 
model and algorithm through numerical experiments. 
Section 5 summarizes the conclusions. 
 
 
3. Methodology 
 
3.1 Mathematical representation of mixed Gaussian and 
impulse noise 
Mathematically, an image can be regarded as a column 

vector 	   x = x1,!,xd( )T , where d is the total number of pixels 

in the images by arranging the columns. The range of pixels 
in a grayscale image is generally assumed to be [0,255]. The 
observed image y contaminated by mixed Gaussian and 
impulse noise is expressed as follows: 
 

	  
y j =

x j + nj , j ∈Ω

z j , j ∈Ωc := 1,…,d{ } \Ω

⎧
⎨
⎪

⎩⎪
            (1) 

 
where the value of 	   Ω∈ 1,!,d{ }  is unknown and called the 

observation field, 
  
n j , j ∈Ω  is an independent identically 

distributed zero-mean additive Gaussian white noise, and 

  
z j , j ∈Ω  is an independent identically distributed impulse 

noise (salt-and-pepper or random impulse noise). For the 
salt-and-pepper impulse noise, the noise pixel 

	   z j ∈ 0,!,255{ }  is valued at 0 or 255 with equal probability. 

For the random impulse noise, 
 
z j  is randomly valued at 

	  0,!,255{ }  with equal probability. The image domain  Ωc  

contaminated by impulse noise is assumed to be unknown, 
and each element of  Ωc  is obtained using the entire image 
domain 	   1,!,d{ }  through a Bernoulli experiment with a 

selected given probability 	 0≤ p ≤1 . The value of Ω  is 
assumed to be unknown. In the present study, a variation 
model based on data-driven tight frames is proposed to find 
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the approximate solution of the original image  x  from the 
observed image. 
 
3.2 Variation model theory 
Image restoration is generally considered an inverse problem. 
An observed image  b  that contains noise is usually the sum 
of the original unknown image  u  and noise ε  and is 
expressed as follows: 
 
 b = u+ε                                (2) 
 

The most commonly used method for restoring the 
original unknown image u is to solve the following variation 
model: 
 

	  
min

u
R1 u( )+ R2 u( )                              (3) 

 
where 	 R1 u( )  is the fitting term, which is used to 

approximate the noisy image, and 	 R2 u( )  is the smoothing 

term used to maintain the image details, such as boundary 
and lines.  

The smoothing term is generally determined by a priori 
assumption imposed on a potential solution. These 
assumptions are generally used in the sparsity of potential 
solutions in certain transform domains. These transform 
domains include gradient and wavelet. The sparsity of a tight 
wavelet frame transform domain is used as the a priori 
hypothesis of potential solutions. Therefore, 	 R2 u( ) = Wu 1 , 

where W is the tight wavelet frame. 
The fitting term 	 R1 u( )  depends on a specified noise 

distribution. For example, 	 R1 u( ) is expressed as follows 

when the noise is an additive Gaussian white noise: 
 

	 R1 u( ) = u−b 2
2                                 (4) 

 

	 R1 u( )  is expressed as follows when the image is 

contaminated by impulse noise: 
 

	 R1 u( ) = u−b 1
                              (5) 

 
However, the data-fitting term designed by the given 

noise may be ineffective on the mixed noise because the 
noise in the observed image rarely originates from a single 
distribution. A simple model was proposed to effectively 
remove the mixed Gaussian and impulse noise. The model 
expression is as follows: 

 

	  
min

u
λ1 u−b 1 +

λ2
2 u−b 2

2
+ ρ Wu 1

         (6) 

 
where, 

	λ1
, 
	λ2

, and ρ  are the non-negative parameters 

used to balance the fitting and smoothing terms. 
A new algorithm, namely, ALM-APG, is proposed to 

solve the model. This new algorithm is described in detail in 
Section 3. The numerical results show that the proposed 
model can effectively remove the mixed Gaussian and 

impulse noise combined with the proposed numerical 
algorithm, although Model (6) seems to be simple. 
 
3.3 Data-driven tight frames 
Data-driven tight frames approximate the input image 
accurately in accordance with the structural characteristics of 
the input image. Cai et al. [24] applied the data-driven tight 
frames to image restoration. The design process of the data-
driven tight frame is as follows: 
 
Data-driven tight frames 
Input: image g (contaminated or uncontaminated) 
Output: A discrete compact frame  W T  constructed 
by a filter 

	 
ai

K( ){ }
i=1

r2  

 
Main program 
(I) Initialize tight frame filter 

	  {ai
(0)}i=1

r2 ; 

(II) for 	   k =0,1,!, K −1  do 
(1)   Define 

 W
k( )  in accordance with

	  {ai
(k )}i=1

r2 ; 

(2) Let 
  υ

(k ) =Tλ (W (k )g)  and 
 Tλ

 be the hard 

threshold operator; 
(3) Construct matrix V, G in accordance with 

	   

V = ( !υ1, !υ2,…, !υN )

G = ( !g1, !g2,…, !gN )

A= ( !a1, !a2,…, !a
r2

)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

; 

(4) Perform SVD decomposition for  VGT  and 

 VGT =UDX T ; 
(5) 

	  ai
(k+1)  represents the ith column of the matrix 

	  A
(k+1) =1 / r XU T , 

	  i =1,…,r2 ; 

(III) Output 
	  {ai

( K )}i=1
r2 . 

 
A set of low-pass and high-pass filters can be obtained 

using data-driven tight frames. A tight frame decomposition 
operator and a reconstruction operator can be established. 
Cai et al. [24] proposed the theory of this part. The specific 
theory is not elaborated here. 
 
3.4 ALM-APG algorithm 
The model cannot be directly solved by traditional methods 
because Model (6) is a least square problem with L1 fitting 
and smoothing terms. To this end, the ALM is used to solve 
Model (6), and the inner subproblem is solved by using the 
APG [27]. 

First, Model (6) is transformed into the following 
problem: 
 

	  
min

u

λ2
2 u−b 2

2
+βT Au− c

                     (7) 

 
where 

 
A= H

W

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, 

	 
c = b

0
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, and 

	  
β =

λ1e

ρê

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

. e and   ê  
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are the vectors with an element of 1. 
Second, Model (7) is transformed into the following 

equivalence problem by introducing a new variable z: 
 

	  

min
u,z

f u,z( ) :=
λ2
2 u−b 2

2
+βT z

s.t. Au+ c = z
                  (8) 

 
The ALM has been extensively used to solve convex 

programming problems. The augmented Lagrangian 
function of the original problem (8) associated with a given 
parameter 	σ >0  is defined as follows: 

 

	   
Lσ u,z; y( ) = f u,z( )+ y,c− Au− z +

σ
2 c− Au− z

2
     (9) 

 
The ALM iteration is used to solve the following inner 

subproblem. The following equation is obtained for a given 

	  y
k ,σ k >0 : 

 

	   
uk+1,zk+1( ) ≈ argmin

u,z
Lσ k

u,z; yk( )           (10) 

 
where 
 

	   

Lσ k
u,z; yk( ) = f u,z( )+σ k

2 c− Au− z+ 1
σ k

yk
2
−
1
2σ k

yk 2

=
λ2
2 u−b 2

2
+βT z +

σ k
2 c− Au− z+ 1

σ k
yk

2
−
1
2σ k

yk 2. 
 

First, z is considered to be minimized as follows: 
 

	  
min

z
βT z +

σ k
2 c− Au− z+ 1

σ k
yk

2
=
1
σ k

ϕβi
i=1

m

∑ ηi( )  (11) 

 
where 

 
η =σ k c− Au( )+ yk . 

 
ϕε t( )  is the Huber function. It 

is defined as follows: 
 

	 

ϕε t( ) =
1
2 t2 t ≤ε

ε t −12ε
2 t > ε

⎧

⎨
⎪⎪

⎩
⎪
⎪

                     (12) 

 
The optimal solution of (11) is defined by the following 

formula: 
 

	 
z = 1

σ k
Sβ η( )

                             (13) 

 
For a given non-negative vector  v , soft threshold 

operator  Sv  is expressed as follows:  
 

	   Sν x( ) = sgn x( )!max x − v,0{ }           (14) 

 
where  !  represents that the elements of the two vectors are 

the inner product, namely, 
  

x ! y( )i = xi yi . 
 
sgn ⋅( )  is the 

symbol function. 
  
sgn t( )  is the symbol of t, 	 sgn 0( ) =0  when 

	 t ≠0 . 
Second, the APG algorithm is used to calculate the 

optimal value u, to solve the following problem:  
 

	  
min

u
h u( ) := 1

σ k
ϕβi

ηi( )
i=1

m

∑ +
λ2
2 u−b 2

2
       (15) 

 
The gradient of h is expressed by the following formula:  

 

	   ∇h u( ) = −AT sgn η( )!min η ,β{ }( )+λ2(u−b)   (16) 

 
where A column is full rank, and 

 
h x( )  is the strict convex 

function. Therefore, Minimization Problem (15) has a 
unique solution. 

On the basis of the ALM and APG algorithms, the 
ALM-APG algorithm is used to solve the original problem, 
and the flowchart is summarized as follows: 

 
ALM-APG algorithm 

		  

Initial :ε >0,u0 = b, y0=y−1=0, L =1,σ 0 =1, k =0
while yk − yk−1( ) /σ k > ε or k =0 do

u0 = u1 = uk ,t0 = t1 =1
for i =1 to p do

ui = ui +
ti−1 −1

ti
ui −ui−1( )

ui+1 = ui − L−1∇h ui( )

ti+1 =
1+ 1+4 ti( )2

2
end for

uk+1 = up+1,zk+1 = 1
σ k

Sβ σ k c− Auk+1( )+ yk( )
yk+1 = yk +σ k c− Auk+1 − zk+1( )
σ k+1 =σ k +1
k = k +1

end while

 

 
 
4. Result Analysis and Discussion 
 
Four groups of numerical experiments were conducted for 
the selected images, namely, “Lena.png,” “Peppers.png,” 
“Cameraman.png,” and “Flower.png,” to verify the 
effectiveness of the proposed model and algorithm for 
removing mixed Gaussian and impulse noise. The salt-and-
pepper impulse noise was selected in the present study. The 
parameters of the mixed Gaussian and impulse noise are as 
follows: mean 0, variance 0.03, and impulse noise density 
30%. To confirm the effect of the numerical experiment, the 
PSNR was used to evaluate the effect of image restoration. 
The expression of PSNR is as follows: 
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PSNR = −20log10

u− û 2
N

                     (17) 

 
where u is the original image,   û  is the restored image, and 
N is the number of pixel points.  

The denoising effects of the proposed image restoration 
algorithm are displayed in Fig. 1 and Table 1. 

The images in Fig. 1 are Lena, Peppers, Cameraman, 
and Flower from top to bottom, and the original, noisy, and 
restored images are arranged from left to right. In Figure 1, 
the proposed image restoration model cannot only 
effectively remove the mixed Gaussian and impulse noise 
but also retain the image feature details, thereby indicating 
the favorable image restoration function of the proposed 
model. Data-driven tight frames continuously adjust the 
filter in the algorithm in accordance with the noise data and 
find the filter that is most suitable for the characteristics of 
the mixed Gaussian and impulse noise, to analyze the size 
and position of the noise. The variation model can accurately 
and effectively remove the mixed Gaussian and impulse 
noise in the image. The noise is found to be in the relatively 
lower frequency region than the detail features of the images. 
Therefore, the proposed image restoration model can not 
only remove the noise but also preserve the detailed features 
of the images.  
 

 

 

 

 
Fig. 1.  Restoration effect of noisy images 
 
 
Table. 1. PSNR values 

Image name  Lena Pepper Cameraman Flower 

PSNR value 30.97 30.78 31.09 30.56 

 
In Table 1, the PSNR values of Lena, Peppers, 

Cameraman, and Flower are 30.97, 30.78, 31.09, and 30.56, 
respectively. If the PSNR value is greater than 30, then the 

effect of image restoration is favorable, thus indicating that 
the proposed image restoration model has an excellent 
denoising effect.  

The proposed model was compared with the two 
methods that were recently published in SIAM Journal on 
Imaging Sciences and SIAM Journal on Multiscale 
Modeling and Simulation, the top journals in the field of 
image processing, respectively. The two methods are 
abbreviated as Yan [6] and Gong [27], respectively. The 
comparison results are presented in Fig. 2 and Table 2. 

 

 

 

 

 
Yan [6]                        Gong [27]                           Ours 

Fig. 2. Comparison of the image restoration effects 
 
Table. 2. Comparison of the PSNR values 

Methods Lena Pepper Cameraman Flower 

Yan [6] 27.95 28.45 27.89 28.05 

Gong [27] 28.44 28.85 29.08 28.85 

Ours 30.97 30.78 31.09 30.56 
 

Qualitatively, Fig. 2 illustrates that the proposed image 
restoration model can effectively remove the mixed 
Gaussian and impulse noise in the image and retain the 
detailed features of images, such as edges and angles, in 
comparison with the other two methods. From the 
quantitative analysis perspective, Table 2 lists that the PSNR 
values of the images processed through the proposed image 
restoration method are over 30, whereas the PSNR values of 
the two other methods are not greater than 30. Then, the 
proposed image restoration model has favorable image 
restoration effects and is, therefore, applicable to 
engineering or medical image background. 
 
 
5. Conclusion 
 
To effectively improve the image restoration effects for 
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images with mixed Gaussian and impulse noise, a variation 
model based on data-driven tight frames was proposed to 
restore images with mixed Gaussian and impulse noise 
combined with data-driven tight frames and the variation 
model based on a patch. The validity of the model was 
verified through numerical experiments. The following 
conclusions could be drawn: 
 
(1) The ALM-APG algorithm has low computational 

complexity and rapid convergence. 
(2) Data-driven tight frames have high adaptability to 

image and noise data and can analyze the 
characteristics of noise. Therefore, the variation model 
based on data-driven tight frames can effectively 
remove the mixed Gaussian and impulse noise in 
images. 

(3) The variation model based on data-driven tight frames 
has better image restoration capability than other image 
restoration methods. Moreover, the model depends on 
image data and has a strong adaptive capability.  
The data-driven tight frame is combined with the 

variation model and applied to the field of image restoration. 

Numerical experiments show that the proposed model and 
algorithm can effectively realize image restoration in 
practice. The proposed model and algorithm can be further 
applied to other similar fields. However, several 
shortcomings in the study are observed. For example, the 
collected data of noise is deficient. The experimental data 
are all simulated data, thereby slightly limiting the 
practicability of the proposed model and algorithm. In future 
studies, the real noise data will be combined with the 
proposed model for further correction to describe its 
effectiveness of the proposed model in removing the 
measured noise in images.  
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