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Abstract 
 

The stage wise orthogonal matching pursuit (StOMP) algorithm based on compressive sensing can effectively solve the 
problems of digital image storage and transmission, including the large amount of sampled data and long sampling time. 
However, the algorithm is only suitable for signal sparsity with known prior information. The sparsity of images is 
unknown in practice. In this study, a sparsity adaptive-based stagewise orthogonal matching pursuit (Sa-St-OMP) 
algorithm was proposed to make the StOMP algorithm suitable for images with unknown sparsity and improve the 
accuracy and speed of image reconstruction. First, the input image was filtered and matched by setting a threshold 
according to the initial residual, and a candidate set was established on the basis of the obtained atom. Second, the step 
size was updated on the basis of residual attenuation, and the adaptively updated step size was employed to build the 
support set. Third, the atom most relevant to the input signal was selected according to the observation matrix and step 
size, and the image reconstruction was realized on the basis of the new support set. Finally, Lena, Couple, and 
Cameraman images were reconstructed through the proposed Sa-St-OMP algorithm, and the reconstruction results were 
compared with those of the orthogonal matching pursuit, StOMP, and basis pursuit algorithms. Results demonstrate the 
following: (1) The average reconstruction time of the Sa-St-OMP algorithm is 63.43% shorter than that of the StOMP 
algorithm, and the reconstruction effect improves by 0.12 db. The reconstruction accuracy and speed of the Sa-St-OMP 
algorithm are superior to those of the StOMP algorithm. (2) The reconstruction time of the Sa-St-OMP algorithm is 
shortened by 63.43% to 98.91% compared with those of the other algorithms, and the reconstruction speed exhibits 
obvious advantages. (3) The Sa-St-OMP algorithm has good adaptability to sparsity, and it accurately reconstructs 
original signals at a low sampling rate. The study provides a technical reference for reconstructing images with unknown 
sparsity.  
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1. Introduction 
 
The rapid development of multimedia and Internet 
technologies has led to the surge of digital image data. 
Efficiently compressing and accurately reconstructing 
massive image data have become important problems to be 
solved in the field of image application to achieve the 
objectives of improving the efficiency of image sampling 
and reducing resource waste in storage and transmission. 
The sampling frequency of compressive sensing is lower 
than Nyquist sampling frequency, and it reduces sampling 
data and saves storage space. Meanwhile, adequate 
information can accurately reconstruct images through 
appropriate reconstruction algorithms [1]. Therefore, 
scholars have paid close attention to accurate reconstruction 
algorithms based on compressive sensing and proposed 
various algorithms such as greedy, combination, and convex 
relaxation algorithms [2]. Greedy algorithms update support 
sets via greedy iteration and gradually approximate original 

solutions. They have been widely used because of their 
simple principle and easy implementation [3]. 

The number of iterations of greedy algorithms can be 
controlled by taking unpredictable sparsity as priori 
information [4], hence, these algorithms have limited 
application. For example, wavelet multi-scale analysis is 
used to analyze the local features of images and to ultimately 
guarantee the integrity of local features. However, the 
algorithms take time efficiency as cost and depend on image 
sparsity, thereby resulting in low solution efficiency [5]. Liu 
Jicheng et al. [6] defined the edge similarity of reconstructed 
images by predefining the filtering of observation results and 
selecting the signal hard threshold to improve solution 
efficiency. Nevertheless, the sparsity of the images could not 
be predicted accurately, and such deficiency influenced the 
reconstruction effect to some extent. Searching for an image 
reconstruction algorithm with good reconstruction quality 
and efficiency suitable for prior information without sparse 
degree has become a crucial topic in the field of image 
processing, and it is also the objective of this study. In the 
current work, the sparsity adaptability of the stagewise 
orthogonal matching pursuit (StOMP) algorithm is improved 
to enhance the quality of reconstructed images and shorten 
the time of image reconstruction. 
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2. State of the art  
 
Existing image reconstruction algorithms mainly focus on 
the greedy matching pursuit (MP) algorithm based on 
compressive sensing. TekeO et al. [8] proposed a new 
perturbed orthogonal matching pursuit (OMP) algorithm to 
eliminate the mismatch problem. The perturbation of the 
selected support vector was controlled in iteration, and the 
reconstruction error was small. However, additional 
sampling dimensions were needed to reduce calculation 
complexity. Zakharov Y.V. et al. [9] adopted dichotomous 
coordinate descent correction iteration to obtain an improved 
OMP algorithm with lower performance complexity than 
MP. Only one margin was added in the iteration process, 
thereby leading to a high time cost. Tawfic I.S. et al. [10] 
proposed a least support denoising OMP algorithm for cases 
involving few noise measurement times. Although sparse 
signal was reconstructed, it led to large computation and 
memory requirements. Yaghoobi M. et al. [11] found that 
the nonnegative OMP algorithm updated on the basis of QR 
decomposition and iterative coefficient could optimize 
calculation cost. However, the reconstruction accuracy was 
not substantially improved. Du Q et al. [12] proposed a 
method for improving the performances of segmentation 
image systems based on a priori, which could enhance the 
classification effects of hyperspectral images. However, the 
accuracy of prior information exerted a certain effect on the 
operation results. Goklani H.S. et al. [13] applied OMP to 
image reconstruction and evaluated its performance at 
different sparsity levels. The algorithm maintained good 
stability in the presence of noise. The shortcoming of the 
algorithm was that the iterative step gradually approached 
image sparsity, thereby reducing the quality and efficiency 
of image reconstruction. Kanjalkar P.M. et al. [14] designed 
an orthogonal wavelet filter by using the factorization of 
generalized semi-band polynomials and applied it to the 
compressive reconstruction of OMP; they achieved good 
results. However, the decoding end had a large computation 
amount. Aravkin A. et al. [15] considered a new formula and 
the method of sparse quantile regression and proved that the 
generalized OMP algorithm based on variable selection 
exhibited a good performance through simulation and 
empirical studies on genome data sets. Nevertheless, the 
robustness of outliers needed to be further enhanced in gene 
selection. Zhang Han et al. [16] diagnosed the faults of 
aeroengine bearings on the basis of the stepwise matching 
morphological analysis of sparse decomposition and realized 
noise reduction and signal separation. However, the iteration 
times and running time of the algorithm were not 
significantly improved. Zhou Weidong et al. [17] proposed a 
new speech enhancement algorithm based on compressive 
sensing according to the approximate sparsity of speech 
signals in the discrete cosine transform domain. The 
algorithm with good robustness not only improved the 
output signal-to-noise ratio (SNR) but also reduced the 
reconstruction time. Shi Haosu et al. [18] obtained estimated 
values through a conjugate gradient algorithm, which 
shortened the time of image reconstruction and enhanced the 
quality of image reconstruction. Nonetheless, the basic 
properties of conjugate direction indicated that the algorithm 
entailed a large calculation amount. Huang Huiying et al. [19] 
took Daubechies as sparse base and improved image 
reconstruction quality by approximately 2% by using an 
orthogonal matching tracking algorithm based on the Dice 
matching criterion. This algorithm was only suitable with 
known sparsity, and its convergence was substantially 

affected by sparsity. Wang Haoran et al. [20] developed a 
backtracking strategy and an atomic optimization strategy, 
both of which achieved good image reconstruction effects. 
However, the algorithm was likely to fall into local optimal 
solutions. 

The aforementioned studies realized image 
reconstruction with known sparsity. However, the 
reconstruction effects were closely related to the estimation 
of image sparsity K. Images can never be reconstructed 
accurately when K values are inaccurate. K values are 
generally unknown or unpredictable in practical applications. 
Although the unknown K problem has been solved by 
updating support sets and gradually increasing sparsity to 
approximate original signals, the comprehensive 
performance of image processing and the time consumption 
are unsatisfactory. 

In view of unknown K values, the sparsity of images in 
the current work was represented through a wavelet base, 
and a Gaussian random observation matrix was designed. 
Combined with the threshold assumption in the StOMP 
algorithm, the improved strategy of adaptive sparsity 
updating was used to reconstruct original images. The 
outcome provided the basis for optimizing the reconstruction 
effect and efficiency of images with unknown sparsity. 

The remainder of this study is organized as follows. 
Section 3 describes the image sparse representation, image 
observation matrix design, image reconstruction algorithm 
of sparsity adaptive-based stagewise orthogonal matching 
pursuit (Sa-St-OMP), and reconstruction quality evaluation 
standard. Section 4 discusses the performance analysis of the 
proposed algorithm. Section 5 concludes the study. 
 
 
3. Methodology 

 
Edge sampling and compression of sparse or compressible 
image signals were realized through the image 
reconstruction method based on compressive sensing. This 
method reduces the number of samples and hardware costs. 
The following aspects are included. First, for image 
signal Nx R∈ , finding a suitable sparse base Ψ  is necessary 
so that the image signal could realize sparse representation 
on Ψ . Second, a stable observation matrix independent of 
the sparse base is designed. Third, a suitable reconstruction 
algorithm is designed to restore the original image. 
 
3.1 Sparse representation of images 
The sparse representation of images can highlight the 
characteristics of images to facilitate the subsequent studies 
of image processing and reduce the costs of storage and 
processing hardware. If the transformation coefficient vector 
i i iX X V← Θ of image signal  Θ =ΨT X under sparse 

base Ψ satisfies
  
Θ

P
≡ θi

P

i
∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/ P

≤ R , where   0 < p < 2  

and 0R > , then the coefficient vector is sparse in some sense. 
Therefore, the representation of image signal through an 
appropriate base is important to ensure the sparsity and 
restoration accuracy of images. Discrete wavelet transform 
(DWT) and fast Fourier transform are generally used to 
realize the sparsification of images. A series of sub-images 
with different resolutions can be obtained after original 
images are subjected to DWT. The high frequency part of 
the image is removed, and the low frequency part that can 
represent the image is retained. 
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3.2 Observation matrix of image signal 
After the sparse coefficient vector T XΘ =Ψ  of the image 
signal is obtained, a stationary M N× observation matrixΦ  
irrelevant to orthogonal base Ψ is designed. The sparse 
coefficient vector is projected through vector { }

1

M

j j
ϕ

=
in the 

M lines of the M N× observation matrix Φ . The inner 

product of Θ and each observation vector { }
1

M

j j
ϕ

=
are 

calculated to obtain M observation values ,j jy ϕ=<Θ >  

(j=1,2, ... ,M), denoted as 1 2( , ,... y )MY y y= ， , namely, 
T CSY X A X=ΦΘ =ΦΨ = . When the sparse vector is 

reduced from N dimensions to M dimensions, important 
information is preserved. 

Only the observation matrix that satisfies the restricted 
isometry property (RIP) can be taken as the measurement 
condition for image signal reconstruction. Observation 
vector Y is a linear combination of K column vectors that 
correspond to nonzero coefficient iθ . Proper positions of K 
nonzero coefficients iθ inΘ  can be determined through the 
M K× linear equation. kδ  is the restricted isometry 

constant . If 
2

2
2

2

1 1k k

f

f
δ δ

Θ
− ≤ ≤ + , then Φ satisfies the RIP. 

Based on the RIP, the random observation matrix is a 
criterion for filtering most zero data. Existing common 
observation matrices include Gaussian random, Bernoulli, 
Fourier random, and Hadamard matrices. The Gaussian 
random matrix means that each element obeys a Gaussian 
distribution independently and satisfies the RIP condition 
with a large probability. Most zero data are simplified on the 
basis of the Gaussian random matrix. Therefore, this matrix 
is widely used in theory and practice 

 
3.3 Sa-St-OMP algorithm 
The reconstruction algorithm is necessary in reconstructing 
original images. Signals are recovered from the linear 
observation CSY A X=   in the reconstruction process. The 
p − norm of vector { }1 2, ,... nX x x= ，x  is 

  
X

P
=

i=1

N

xi

p
∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/p

. When 0p = , 0 − norm, which 

represents the number of nonzero items in X, is obtained. On 
the premise that signal X is sparse or compressible; the 
problem of solving the underdetermined equation set 

CSY A X= is transformed into a minimum 0 − norm problem 

0
min T XΨ  s.t. CS TA X X Y=ΦΨ = . Image reconstruction 

algorithms are mainly classified into greedy reconstruction, 
combination, and statistical optimization algorithms. Greedy 
algorithms have been widely used because of their fast 
iterative process. 

The StOMP greedy algorithm needs image sparsity as 
prior information, and the reconstruction accuracy is 
relatively low. Therefore, the sparsity adaptive idea is 
introduced into the StOMP algorithm. The proposed Sa-St-
OMP algorithm realizes sparsity estimation and image 
reconstruction. The steps are as follows: 

Step-1: Initialize the parameters. The input image is y, 
and the initial residual is 0r y= . D is a complete dictionary, 
and the support set is F ϕ= . 

Step-2: Set the threshold value according to the residual. 
The atom that is most related to the residual is obtained 
through Formula (1):  

 

1{j:| | t }T
k k k kJ r σ−= Φ • >                                    (1) 

 
where 1=|| || /k kr nσ −

  and t 3k≤ ≤2 . TΦ is the transposition 
of the observation matrix. 1kr −  is  the reconstruction residual. 

k kt σ  is the threshold. k is the kth iteration. n  is the root 
extracted from the dimension of the input signal. kt is the 
threshold parameter. kσ is the standard noise level. 

Step-3: Select the atomic set and 
kJ

D  with matching 
degrees that are higher than the threshold. According to the 
matching atom, a candidate set is established through 
Formula (2):  

 
1 kk k JC F D−= ∪                                                  (2) 

 
The candidate set consists of the support set of the 

previous iteration and the atoms selected by the current 
iteration-matched filter, where kC is the candidate set. 1kF − is 
the supporting set established in the last iteration. 

kJ
D is the 

atomic set obtained by matched filtering. 
Step-4: Determine the attenuation of the residual after 

obtaining the candidate set.  
Step-5: If the residual in Step 4 attenuates, then take the 

number of candidate sets obtained in Step-3 as the step size 
to establish the support set through Formula (3): 

 
(| |, )

k

T
k C kF Max D y S= •                                      (3) 

 
where kS  is the number of atoms in the candidate set. 
Support set kF  represents a set of atoms matched with y 
from a dictionary composed of atoms in a candidate set by 
taking kS as the step size.  

Step-6: If the residual in Step-4 does not attenuate, then 
update the step size of the support set to the number of 
atoms in the candidate set in Step-3 and the matched filter in 
Step-2. Through the adaptive updating of the step size, the 
purpose of sparsity approximation is achieved. 

Step-7: Establish a support set by using the step size 
obtained in Step-6. 

Step-8: After the support set is obtained, perform 
orthogonalization on the atoms in the support set through 
Formula (4). The least square fitting method is used to 
approximate the image signal to realize image reconstruction. 
The reconstruction residual is obtained by using Formula (5): 
 

kk Fx D y+=                                                      (4) 
 

k

T
k F kr y x= −Φ                                                 (5) 

 
Step-9: Return to Step-2. The reconstruction residual 

obtained in Step-8 is used as the residual to iterate the 
iteration. The termination condition of the iteration is 
evaluated until the two residuals are smaller than a given 
value, namely, || ||r ε< , where ε is a given value. Finally, 
the optimal reconstruction image is obtained. 
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3.4 Quality evaluation of image reconstruction  
Peak SNR (PSNR) and running time are used as the 
objective criteria for evaluating image reconstruction quality. 
PSNR, as an objective criterion for measuring image 
distortion or noise level, is in direct proportion to fidelity. 
The definition is as formula (6): 
 

210log( / )PSNR L MSE=                                        (6) 
 
where L is the quantization series of the image gray value 
and MSE is the mean square deviation. The calculation 
formula (7) of MSE is: 
 

2[ ( , ) ( , )] /MSE x y x y M Nʹ= Ψ −Ψ ×∑∑              (7) 

 
where M N×  is the image size. ( , )x yΨ and ( , )x yʹΨ  are 
the gray values of the original image and the reconstructed 
image at point(x,y), respectively. RMSE reflects the 
approximation degree between the denoised and original 
images. A small RMSE indicates that it is relatively close to 
the ideal denoising effect.  

Reconstruction effects are usually measured by 
subjective vision. However, when the PSNR value is greater 
than 30 dB, finding the difference between reconstructed and 
original images by subjective vision is difficult. Although 
MSE and PSNR reflect the difference between original and 
reconstructed images as a whole, they cannot reflect the 
local difference. Under the same SNR condition, the visual 

effect is significant in the case of uniform errors. Otherwise, 
the visual effect is not ideal. Therefore, image quality is 
objectively evaluated through the PSNR value. Sometimes, 
the results may not be consistent with the subjective 
evaluation.  

 
 

4 Result analysis and discussion 
 

On the basis of the discrete wavelet base Ψ  in Section 3.1 
and the Gaussian random matrix in Section 3.2, two sets of 
experiments on three international standard test images with 
a pixel size of 256×256, namely, Cameraman, Couple, and 
Lena, were conducted by using the Sa-St-OMP algorithm 
proposed in Section 3.3 under different sampling rates. The 
first group was the experiment of reconstructing Cameraman 
and Couple through the Sa-St-OMP algorithm. The second 
group compared the reconstruction effects of Lena by the 
Sa-St-OMP algorithm and the other algorithms. 
 
4.1 Experiment on image reconstruction with Sa-St-
OMP 
Cameraman and Couple were reconstructed at the sampling 
rates of 0.3, 0.4, 0.5, 0.6, and 0.7 to compare the 
reconstruction effects of the Sa-St-OMP algorithm with 
different sampling rates. The reconstructed images are 
shown in Fig. 1 and 2. The PSNR ratio and reconstruction 
time at different sampling rates are listed in Table 1. 
 

 

   
(a) Original image                                             (b) Sampling rate: 0.3                                        (c) Sampling rate: 0.4 

   
(d) Sampling rate: 0.5                                       (e) Sampling rate: 0.6                                        (f) Sampling rate: 0.7 

Fig. 1.   Reconstruction effects of Cameraman with the Sa-St-OMP algorithm 
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(a) Original image                                             (b) Sampling rate: 0.3                                        (c) Sampling rate: 0.4 

   
(d) Sampling rate: 0.5                                       (e) Sampling rate: 0.6                                        (f) Sampling rate: 0.7 
Fig. 2.   Reconstruction effects of Couple with the Sa-St-OMP algorithm 
 
Table. 1.  PSNR and time consumption of the Sa-St-OMP algorithm for image reconstruction at different sampling rates 

Sampling 
rate 0.3 0.4 0.5 0.6 0.7 

Image PSNR time PSNR time PSNR time PSNR time PSNR time 

Couple 25.9483 0.35328 25.9765 0.84419 26.0323 0.9642 26.3654 0.88339 26.1626 1.0141 
Cameraman 23.7104 0.7782 23.8935 0.91864 23.9931 0.84498 24.0352 0.78942 24.2331 1.4694 

 
 Fig. 1 and 2 demonstrate the reconstruction effects of the 
improved algorithm for Couple and Cameraman at different 
sampling rates. The subjective vision indicates that the Sa-
St-OMP algorithm showed good image reconstruction 
effects even at low sampling rates. As shown in Table 1, the 
PSNR value and reconstruction time t of the two images at 
the same sampling rate varied with image complexity. 
 

4.2 Performance analysis of the Sa-St-OMP algorithm 
The reconstruction effect of Lena with the Sa-St-OMP 
algorithm was compared with those with OMP, StOMP, and 
basis pursuit (BP) algorithms to further analyze the 
performance of the Sa-St-OMP algorithm. The reconstructed 
images at the sampling rate of 0.5 are shown in Fig. 3. Table 
2 presents the PSNR values and reconstruction times of each 
algorithm at different sampling rates. 

   
( a) Original image                                            (b) BP                                                               (c) Sa-St-OMP 
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   (d) OMP                                                         (e) StOMP 
Fig. 3.  Reconstruction effects of BP, Sa-St-OMP, StOMP, and OMP at the sampling rate of 0.5 
 
Table. 2. PSNR and time consumption in image reconstruction of Sa-St-OMP, BP, OMP, and StOMP at different sampling 
rates 

Sampling 
rates 0.3 0.4 0.5 0.6 0.7 

Algorithms PSNR time PSNR time PSNR time PSNR time PSNR time 
BP 32.2981 27.1719 32.3994 27.9012 32.5155 26.9045 32.5053 17.7738 32.5025 27.4424 

Sa-St-OMP 24.5004 0.26705 24.4962 0.24912 24.5184 0.35405 24.4567 0.25005 24.5044 0.26319 
OMP 29.1798 1.5058 29.2057 1.3105 29.2359 1.3326 29.3288 1.3484 29.2955 1.4661 

StOMP 24.3904 0.76354 24.4462 0.86038 24.2584 0.82191 24.3567 0.61986 24.4244 0.71831 

From the subjective vision, the BP algorithm presented 
the best reconstruction effect at the same sampling rate, 
followed by OMP. The difference between Sa-St-OMP and 
StOMP was relatively small. The reconstructed PSNR in 
Table 2 implied that the BP algorithm also had the highest 
PSNR value and the optimal reconstruction quality. The 
PSNR values of Sa-St-OMP and StOMP were relatively 
close. The average PSNR value of the Sa-St-OMP algorithm 
was 0.12 db higher than that of the StOMP algorithm. This 
value mainly resulted from the optimal matching of atoms 
through the Sa-St-OMP algorithm. The reconstruction time 
shown in Table 2 indicated that the reconstruction time of 
the proposed Sa-St-OMP algorithm was much shorter than 
those of the other algorithms under the same sampling rate. 
The time consumption of the BP algorithm was the longest, 
and the average time was up to 47 times that of other 
algorithms. The time consumption of Sa-St-OMP was the 
shortest, that is, it was shortened by 98.91%, 80.13%, and 
63.43% relative to BP, OMP, and StOMP, respectively. This 
result was due to the fact that the Sa-St-OMP algorithm 
improved the efficiency by adaptive step size. Although 
OMP, SP, and StOMP algorithms exerted good 
reconstruction effects, they need the sparsity of images, 
which limits their applications. The proposed Sa-St-OMP 
algorithm could maintain the low complexity of the original 
StOMP algorithm and improve the accuracy and efficiency 
of image reconstruction under the condition of unknown 
sparsity. 
 
 
5. Conclusions 
 
An improved strategy for dynamic step size approximation 
to original images was proposed according to the atom 
selection criterion of the StOMP algorithm to find a StOMP 
algorithm that integrates reconstruction quality and 
reconstruction efficiency under unknown sparsity. The 
proposed strategy realized fast and accurate image 
reconstruction. The reconstruction effects of the Sa-St-OMP 
algorithm were analyzed on the basis of the PSNR value and 

reconstruction time. The following conclusions could be 
drawn.  

 (1) The atom candidate set of the Sa-St-OMP algorithm 
is from the union set of the atoms most related to the 
residuals after matched filtering and the support set of the 
previous iteration. The accuracy of image reconstruction is 
improved to a certain extent. 

 (2) The step size of the support set of the Sa-St-OMP 
algorithm can be dynamically updated according to the 
number of atoms in the candidate set and the matched 
filtering. This feature greatly improves the reconstruction 
efficiency. Therefore, this algorithm is suitable for fast 
image reconstruction.  

 (3) The Sa-St-OMP algorithm has good adaptability to 
signal sparsity and stable reconstruction quality while 
maintaining low refactoring complexity. Therefore, the 
improvement of the StOMP algorithm achieves good results.  
The proposed Sa-St-OMP algorithm could realize accurate 
image reconstruction at low sampling rates through the 
introduction of the idea of sparsity adaptability to the 
iteration process, and it exhibited an advantage in terms of 
reconstruction time. With the consideration of reconstruction 
efficiency and reconstruction quality, this study found that 
the Sa-St-OMP algorithm is practical for fast and accurate 
image reconstruction. This algorithm has some reference 
values for image reconstruction without prior sparsity 
information, and it offers practical significance in the field 
of image processing. However, methods with high accuracy 
for selecting iterative thresholds have not been developed 
and will thus be studied further. 
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