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Abstract 
 

Ovarian granulosa cell tumor (GCT) has different recurrence periods, which dramatically decreases after the 5-year 
survival period. Prognosis evaluation has important clinical values and is a research hotspot. Prognosis evaluation 
methods include logistic regression, Chi-square analysis, and other traditional statistical methods; however, these 
techniques cannot solve problems, such as limited samples and ambiguous prognosis-related pathologic features, and 
have poor reliability and validity of assessment results. In this study, an artificial intelligence theory was introduced, and 
the prognosis evaluation of ovarian GCT based on co-forest intelligence model was proposed to find a method applicable 
to the pathological data of ovarian GCT with limited samples and ambiguous prognosis features. First, data preprocessing 
of ovarian GCT samples was performed. This procedure included deleting unqualified data and standardizing and 
normalizing data. Second, prognosis evaluation of ovarian GCT was accomplished by using co-forest intelligence 
algorithm. Finally, the validity of the proposed prognosis evaluation method was verified by 75 patients with ovarian 
GCT in the West China Second Hospital of Sichuan University. Results indicate that: (1) the accuracy of prognosis 
evaluation based on the feature set selected by Log-Rank test increases by 12.1% compared with that (4.1%) based on the 
direct use of standardized and normalized feature set, and (2) the co-forest algorithm can be used for the model analysis 
of small pathological datasets of ovarian GCT. Moreover, this method can be used to explore effective characteristics 
from the candidate feature dataset through automatic learning with prediction accuracy of up to 95.7%. This study reveals 
the reliability and effectiveness of the proposed prognosis evaluation method of ovarian GCT based on co-forest 
intelligence model. Conclusions are beneficial for clinicians to accurately understand the development laws of ovarian 
GCT, take the initiative to master the diagnosis and treatment, and increase the long-term survival rate of patients. 
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1. Introduction 
 
Ovarian granulosa cell tumor (GCT) is a sex cord-stromal 
tumor with low grade malignancy (including adult GCT and 
juvenile GCT). Menstrual disorder in the reproductive age or 
irregular vaginal bleeding in menopause period, abdominal 
pain, pelvic mass and ascite, long-term recurrence, and 
significant reduction of five-year survival rate after 
recurrence are common clinical symptoms of ovarian 
GCT[1]. Therefore, prognosis evaluation of ovarian GCT is 
important for its diagnosis and treatment formulation by 
clinicians. A stable and reliable evaluation method is 
conducive to clinicians to take the initiative to master 
diagnosis and treatment and increase the long-term survival 
rate of patients. However, the existing prognosis evaluation 
methods of ovarian GCT mainly use traditional statistical 
approaches, such as logistic regression and Chi-square 
analysis. These methods determine the correlation between 

single factor and tumor recurrence[2]. Differences of 
relevant prognosis pathologic features remain unknown. 
Different literatures report significantly different outcomes, 
providing difficulty to clinicians reliable to find references 
for the diagnosis and treatment of this disease[3]. In addition, 
the long recurrence of ovarian GCT causes high loss ratio of 
follow-up, resulting in limited samples and further 
increasing difficulties against prognosis evaluation.  

Recently, semi-supervised learning technology has 
broken the application bottleneck of modeling analysis based 
on small-sized dataset[4][5]. Semi-supervised learning 
technology can train the initial model based on few labeled 
ovarian GCT samples, predict the unlabeled ovarian GCT 
samples based on the automatic marking strategy of 
probability learning theory, and improve the generalization 
ability of the model learned and acquired from few labeled 
samples by using the effective information hidden in 
unlabeled data. These characteristics make artificial 
intelligence (AI) technology applicable to prognosis 
evaluation of ovarian GCT with limited samples and 
ambiguous relevant prognostic features. A series of 
associated features, including clinical and pathological 
features, is enlisted based on existing studies[3, 6-16]. 
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Furthermore, the prognosis evaluation method of ovarian 
GCT based on co-forest algorithm and multiple factors was 
constructed to solve problems of limited ovarian GCT 
samples and ambiguous prognostic features.  
 
 
2. State of the art  
 
Abundant academic studies on prognosis evaluation of 
ovarian GCT have been reported at home and abroad, trying 
to find stable and reliable prognostic features of ovarian 
GCT and provide some references for postoperative 
treatment and therapeutic effect evaluation of tumors. Based 
on literature review, the recurrence period of ovarian GCT is 
in 5 years after the first visit[6]. In the study of Fox et al., 
more than 50% patients suffered recurrence in 2 years[3][6]. 
Schwartz et al. also reported that 76.3% patients suffered 
recurrence in 3 years[7][8]. To have patients who suffered 
recurrence after more than 10 years is also common[11][12]. 
Sommers once reported that sixpatients with ovarian GCT 
suffered recurrence after 20 years of operation[13]. The 
longest period of recurrence of ovarian GCT reaches 37 
years[6]. Clinical features, such as recurrence of ovarian 
GCT, pelvic spread, and tumor involvement of extra ovarian 
organs, are believed as effective features of poor prognosis 
of ovarian GCT[6][14]. Various pathologic features of 
ovarian GCT are significantly correlated with clinical 
prognosis. However, different research conclusions still had 
many contradictions and disputes. Haba et al.[15] pointed 
out pathologic features with tumor well-differentiation. For 
example, follicular pattern of tumor cells and occurrence of 
Call-Exner body all promoted good tumor prognosis. Insular 
or diffuse pattern of tumor cells prompted poor 
differentiation of tumors and poor prognosis[15]. Pectasides 
et al.[16] believed that nuclear mitosis activity of tumor cells 
is related with the associated marker Ki-67 index, and 
expression levels of oncogene and anti-oncogene markers 
(e.g., P53, P16, and PTEN) are pathological features related 
with prognosis of ovarian GCT. However, no agreement on 
these research conclusions has been reached yet. Moreover, 

ovarian GCT is not a common ovarian tumor and has very 
limited clinical samples and difficult data availability 
(acquisition of one sample covers multiple programs, 
including collection of clinical data, pathologic image, and 
immunohistochemical staining).   

The prognosis analysis modeling of ovarian GCT based 
on clinical and pathologic data shall prevent unqualified 
samples in pathologic dataset involved in iterative tuning of 
the model. Before the modeling analysis based on the feature 
dataset, the feature dataset has to be standardized and 
normalized. The correlation between pathologic features and 
clinical prognosis of ovarian GCT has not been determined 
completely. Therefore, this modeling requires that the 
applied intelligence algorithm shall be able to explore 
effective features from candidate feature dataset through 
automatic learning. In addition, with limited pathologic data 
of ovarian GCT, the intelligence algorithm shall be capable 
to establish the initial model by using few samples. 
Furthermore, the model can screen qualified samples for 
iterative tuning to improve the prediction performance of the 
model. Based on the above analysis, a prognosis evaluation 
method of ovarian GCT was proposed based on the co-forest 
intelligence model. First, a series of features, including 
clinical and pathologic features, was enlisted in the proposed 
model with reference to existing literatures and research 
results. Unqualified samples in the feature dataset were 
eliminated, and data standardization and normalization were 
performed. Subsequently, the co-forest intelligence 
algorithm that can explore effective features automatically 
was applied to prognosis evaluation of pathologic data of 
ovarian GCT.   

The remainder of this study is organized as follows. 
Section 3 describes the research methodologies, including 
data preprocessing and co-forest intelligence algorithm for 
ovarian GCT prognosis evaluation. Section 4 constructs the 
GCT pathologic dataset based on 75 patients with ovarian 
GCT from April 2002 and February 2014 in West China 
Second Hospital of Sichuan University. Section 5 carries out 
the corresponding experiments and analyses based on above 
GCT pathologic dataset. Section 6 presents the conclusions.  
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Fig. 1.  Flowchart of the proposed prognosis evaluation method  
 
3. Methodology  
 
The flow chart of the proposed prognosis evaluation method 
of ovarian GCT based on the co-forest intelligence model is 
shown in Fig.1. First, pathologic data of ovarian GCT 
samples were preprocessed, including elimination of 
unqualified data and data standardization and normalization. 

Second, prognosis evaluation of ovarian GCT was 
accomplished by the co-forest intelligence algorithm. 
Structure of GCT pathologic data was determined with 
reference to previous literatures and research findings. A 
series of relevant features including clinical and pathological 
characteristics was enlisted in the proposed method. 
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3.1 Preprocessing of pathologic dataset of ovarian GCT  
Original data are generally incomplete, redundant and fuzzy. 
The interference information in the original data may cause 
analysis bias[17]. Therefore, data preprocessing is needed 
before prognosis evaluation by using the co-forest 
intelligence model, including elimination of unqualified data 
according to expert rules and data standardization and 
normalization[18].  

First, uniqueness, integrity (whether key attribute values 
in data records are clear and integral), validity (whether the 
value range of each attribute in data record is reasonable and 
mets the constraints), and consistency (whether unit of each 
attribute in data records is set uniform) should be observed. 
Inconsistent standards and data structure shall be avoided, 
and pathologic data of ovarian GCT shall be verified 
according to their medical significance. Data that fail to 
meet the above conditions shall be deleted.  

Given that the feature dataset of ovarian GCT covers 
different types and dimensions of attributes, which may 
influence the modeling analysis results, data standardization 
and normalization are necessary to ensure that all features 
are at the same order of magnitudes and applicable for 
contrast analysis. Data standardization method is related 
with actual meaning and valuing mode of data and shall be 
judged according to expert rules. The data processing model 
will be interpreted in detail in Section 4.1. Zero-mean 
normalization method was adopted as follows:  
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where [ ]kN i  is the attribute i in the normalized sample k; and 
[ ]kS i  is the attribute i in the sample k. [ ]kM i  and [ ]kV i  are 

mean and variance of attribute i in the sample k, respectively. 
The calculation formulas are shown as Eqs. (2) and (3).  
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where m is the sample size in the feature dataset of ovarian 
GCT. 
 
3.2 Prognosis evaluation of ovarian GCT based on co-
forest intelligence algorithm  
Semi-supervised learning algorithm can train the initial 
model by using few labeled samples. During prediction of 
unlabeled samples, the model can screen unlabeled samples 
with high confidence coefficient for iterative tuning 
according to screening strategy, further improving the 
generalization ability of the model[19][20]. Co-training is an 
important branch in semi-supervised learning algorithm. 
Zhou et al. proposed the co-forest algorithm[21] based on 
the intelligent collaborative algorithm[4][5], which further 
used the collaborative performance of multiple basic models 
and can perform modeling analysis on small-sized dataset. 
Moreover, the co-forest algorithm is able to explore effective 
features from candidate feature dataset through automatic 
learning. In this study, the co-forest algorithm was applied 
for prognosis evaluation of ovarian GCT.  

The co-forest model accomplishes the co-training by 
using six base classifiers. First, six independent sample 
subsets are acquired through Bootstrap resampling of labeled 
sample set and used to train six base classifiers. Next, 
unlabeled samples, which meet the requirements, are 
selected by combining classifiers (rest five base classifiers) 
as the supplementary sample set for iterative tuning of the 
model. The iterative training of the co-forest intelligence 
model is shown in Fig.2. Specific steps are introduced as 
follows. 
Step 1) Six independent training sample subsets ( 1L , 2L , 3L , 

4L , 5L , and 6L ) are constructed through Bootstrap 
resampling[22] from labeled sample set. They are used to 
train base classifiers (random stress[23]) ( 1bc , 2bc , 3bc , 

4bc , 5bc , and 6bc ), which can explore effective features 
automatically from the original dataset.  
Step 2) Implementing co-training of six base classifiers. The 
unlabeled samples that shall be added in base classifier ibc  
for next iterative training are determined by voting of the 
combining classifier iHC . Next, the newly constructed 
sample set is used to re-train base classifiers.  

First, classification errors ie  (suppose it is the i-th 
iteration at present) of labeled sample set by the combining 
classifier iHC (combination of five base classifiers except the 
base classifier ibc ) are recorded. If ie  meets Eq. (4), 
samples with high confidence coefficient, which meet the 
conditions, are selectedas the extended training set. 
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where the initial value of classification error ( 0e ) can be set 
as 0.5. During optimization of base classifiers, extended 
sample set is only selected when the performance of the 
combining classifier is improved. Specifically, data in 
unlabelled sample set are added into the candidate extended 
sample set. When the weight sum of all added unlabeled 
samples is higher than the threshold, adding is stopped. Next, 
extended samples are screened from the candidate extended 
sample set according to the confidence coefficient. Single 
candidate sample in the candidate sample set, which has 
lower confidence coefficient than the threshold shall be 
deleted. Then, candidate sample set is formed by screening 
according to threshold of single confidence coefficient and 
subsequently judged by Eq. (5). If the sample meets the 
conditions, it is used as the extended sample set. Otherwise, 
the sampleis deleted.  
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where ,i tW is the weight of the sample set at the i-th iteration. 

,i tW  is calculated as follows. 
The weight , ,i t jW  is the predicted confidence coefficient 

of sample jx  of the 1n −  classifier except for i-th classifier 
at the t-th iteration. 

According to the above method, training sample sets of 
base classifiers ( 1bc , 2bc , 3bc , 4bc , 5bc , and 6bc ) are 
extended by using the combining classifier( 1HC , 2HC , 3HC , 
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4HC , 5HC , and 6HC ). In this way, the co-training of six 
base classifiers is accomplished. 
Step 3) Determining whether supplementary samples added 
to six base classifiers is judged one by one. If yes, the 
supplementary samples are integrated with current sample 

set of the base classifier to re-train the base classifier and 
update the state of the flag bit.  
Step 4) The updating flag bit of six base classifiers is 
checked one by one. If none is updated, training of co-forest 
intelligence model is stopped. Otherwise, step 2 is 
performed, and the co-training is continued.  

  

co-forest 
intelligence model

build six base 
classifiers

build  six  sample  
subsets

train six base 
classifiers 

iterative training the six base classifiers

co-training six 
base classifiers

update six base 
classifier

extend the 
training set

screening 
according to 
confidence

Y

N

 
Fig. 2.  Training of the co-forest intelligence model  
 
3.3 Construction of pathologic dataset of ovarian GCT  
Patients with ovarian GCT from April 2002 to February 
2014 diagnosed and hospitalized in the West China 2nd 
University Hospital of Sichuan University were selected in 
the research based on the following rules. 
 
 (1) Diagnosis of ovarian GCT was reviewed and 
confirmed by senior pathologists.  
 (2) Complete clinical data from the first visit to treatment 
period.  
 (3) Follow-up visit≥3 years. 

Finally, 75 patients with ovarian GCT were investigated 
in this experiment, including 17 patients suffering recurrence 
of tumor in the follow-up visit. The recurrence period ranges 
between 6 and 52 months, 32 months in average. Among 
them, three patients died of recurrence. 

 
Clinical data of all patients were reviewed, and different 

clinical characteristic features were summarized, including 
age, modus operandi, clinical stage of tumor, and 
postoperative chemotherapy. In the pathologic dataset of 
ovarian GCT, patients aged from 14 to 80, and the age of 
median onset was 47 years old. All patients were treated by 
operations. Among them, 42 patients (56%) had primary 
operation and adopted uterus + bilateral adnexectomy +/− 
lymph node excision, 24 patients (32%) had adnexectomy of 
the affected side or tumorectomy, and 9 patients (12%) had 
tumor reductive surgery. After the operation, 49 patients 
(52%) were determined as stage I, 20 patients (40%) at stage 
II, and 6 patients (8%) at stage III. In addition, 48 patients 
(64%) received radiotherapy/chemotherapy, and another 27 
patients (36%) had not received radiotherapy/chemotherapy. 

Pathologic data and sections of all patients are reviewed 
by senior attending doctors. The tumor diameter ranges 
between 2.5 and 14cm, 5.8cm in average. Specifically, six 
patients (8%) had spontaneous tumor rupture. Tumor 

patterns under a microscope are mainly follicular pattern 
(Fig.3), insular pattern (Fig.4), trabecular pattern (Fig.5), and 
diffuse/sarcoma pattern (Fig.6), accompanied with few 
combined patterns (two or more patterns in the above four 
patterns). Twenty six patients (34.7%) presented tumor 
hemorrhage and necrosis. Call-Exner body (Fig.7) was 
observed in 48 patients (64%) (Fig.7), and tumor 
luteinization was detected in 23 patients (30.7%) (Fig.8). 
The nuclear mitosis phase of tumor counted 1-21/10HPF, 
7/10HPF in average. In immunohistochemical test, 52 
patients (69.3%) were PTEN positive, 62 patients (82.7%) 
were p16 positive, and 43 patients (57.3%) were p53 
positive (positive cells>50%[6]). 
 

 
Fig. 3.  Tumor cells in follicular pattern (amplification factor=100)  
 

 
Fig. 4.  Tumor cells in insular pattern (amplification factor=100)  
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Fig. 5.  Tumor cells in trabecular pattern (amplification factor=100)  
 

 
Fig. 6. Tumor cells in diffuse/sarcoma pattern (amplification 
factor=100)  
 

 
Fig. 7. Tumor cells in Call-Exner body pattern (amplification 
factor=400)  
 

 
Fig. 8.  Luteinization and nuclear mitosis of tumor cells (amplification 
factor=400)  
 
 Patients were divided into the recurrence group and the 
non recurrence group. Pathological and clinical factors 
related with tumor recurrence were analyzed preliminarily 
by Log-Rank test[24]. Clinical factors related with 
recurrence included clinical stage of tumor and postoperative 
chemotherapy (p<0.05). Pathological factors included 
spontaneous tumor rupture, tumor cell pattern (insular or 
diffuse patterns), nuclear mitosis number of tumor cells, and 
positive rates of p53 and Ki-67 index (p<0.05). 
 
4 Simulation result analysis  
 
4.1 Data preprocessing experiment and analysis  
Pathologic sample set of ovarian GCT is preprocessed, 
including standardization and normalization. Preprocessing 

rules for specific data in samples are shown in Table 1. 
Different preprocessing rules are described as follows.  

(1) Rule I: binary data term is 1 if it has correspondence. 
Otherwise, it values 0. 

(2) Rule II: multiple-valued data term with determined 
value is discretized according to regulated proportion. 

(3) Rule III: multiple-valued data term without 
determined value is truncated first according to the upper 
limit set by expert rules and then discretized. 
 
Table. 1. Data preprocessing rules of ovarian GCT  

Index Rules 
clinical stage of tumor II 

postoperative chemotherapy I 
Call-Exner body I 

number of nuclear mitosis III 
cell atypism I 

haemorrhage and necrosis I 
follicular pattern I 
insular pattern I 

trabecular pattern I 
ribbon pattern I 
diffuse pattern I 

luteinization of tumor cells I 
Ki-67 expression II 

PTEN II 
EGFR II 

P53 II 
prognostic status I 

 
Pathological samples of ovarian GCT include 17 

clinical/pathological features and 1 prognosis status. Some 
preprocessed pathological data samples of ovarian GCT are 
listed in Table 2, including the original data and 
preprocessed (standardized and normalized) data. 

In Table 2, attribute values of all preprocessed data meet 
the requirements of standardization and normalization.  
 
4.2 Experimental analysis on prognosis evaluation of 
ovarian GCT  
For ovarian GCT samples, a series of relevant features 
including clinical and pathological features was enlisted with 
reference to previous literature and research results. On this 
basis, two feature sets were constructed, including the 
following. 
 

 (1) Feature set (M1) after standardization and 
normalization of all features in Table 1 except the prognosis 
status was established. 

(2) Based on M1, the feature set (M2) of factors, which 
have significantly statistical (p<0.05) correlations with 
recurrence according to preliminary Log-Rank test, was 
constructed. It covers clinical stage of tumor, postoperative 
chemotherapy, nuclear mitosis, spontaneous tumor rupture, 
positive rate of immunohistochemical markers (p53 and Ki-
67), and pattern of tumor cells (follicular and diffuse 
patterns). 

 
For M1 and M2, the proposed co-forest intelligence 

model was applied for the experiment of prognosis 
prediction. The results were compared with the decision tree 
C4.5[25] and support vector machine (SVM) model [26]. 
The three-fold cross validation method was applied in the 
experiment. The receiver operator characteristic curve (ROC) 
of prognosis evaluation based on co-forest intelligence 
model, decision tree C4.5, and SVM model based on M1 are 
shown in Fig.9. The ROC curves of prognosis evaluation 
based on co-forest intelligence model, decision tree C4.5, 
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and SVM model based on M2 are shown in Fig.10. The 
ROC curves of prognosis evaluation based on co-forest 
intelligence model, decision tree C4.5, and SVM model 
based on M1 and M2 are shown in Figs.11–13. Prediction 
performance statistics of the above three models based on 
different feature sets are presented in Table 3. 
 
Table. 2. Preprocessing results of some ovarian GCT data  

Index Sample 1 Sample 2 
before after before after 

clinical stage of tumor stage II 0.5 stage I 0 
postoperative 
chemotherapy none 0 Exist 1 

call-Exner body exist 1 Exist 1 
number of nuclear 

mitosis 1 0.2 3 0.6 

cell atypism none 0 None 0 
haemorrhage and 

necrosis exist 1 None 0 

follicular pattern none 0 Exist 1 
insular pattern exist 1 Exist 0 

trabecular pattern exist 1 None 0 
ribbon pattern none 0 None 0 
diffuse pattern exist 1 None 0 

luteinization of tumor 
cells none 0 None 0 

Ki-67 expression 50% 0.5 20% 0.2 

PTEN focal 
positive 0.33 focal 

positive 0.33 

EGFR negative 0 Negative 0 

P53 negative 0 focal 
positive 0.33 

prognostic status favorable 1 unfavorable 0 
 
Figs.9 and 10 show that the proposed prognosis 

evaluation method of ovarian GCT based on the co-forest 
intelligence model is superior decision tree C4.5 and SVM 
model in terms of prognosis prediction based on either M1 
or M2. Figs.11–13 show that the prognosis prediction 
accuracies of the co-forest intelligence model, decision tree 
C4.5, and SVM model based on M2 are significantly higher 
than those based on M1. These experimental results prove 
the validity of preliminary feature set screening by Log-
Rank test. Table 3 shows that the area under the ROC curves 
(AUCs) of the co-forest intelligence model based on M1 and 
M2 (0.916 and 0.958, respectively) are far larger than those 
of the decision tree C4.5 (0.741 and 0.862) and SVM model 
(0.713 and 0.798). 

According to the above results, the proposed prognosis 
evaluation of ovarian GCT based on co-forest intelligence 
model has significantly higher validity than those of decision 
tree C4.5 and the SVM model. Furthermore, prognosis 
prediction accuracies of the co-forest intelligence model, 
decision tree C4.5, and SVM model based on M2 are higher 
than those based on M1, proving validity of Log-Rank test 
in selection of the original feature set. The proposed method 
overcomes problems of limited pathological samples and 
difficult determination of prognosis-relevant factors in 
prognosis evaluation of ovarian GCT. Furthermore, the 
method achieves satisfying prediction performance and has 
high practical value in prognosis evaluation. This study is 
conducive to clinicians to optimize the treatment scheme and 
realize individual precision treatment based on 
comprehensive evaluation of patients’ conditions, thus 
guaranteeing the long-term survival rate and survival quality 
of patients. 

 
Fig. 9.  ROC curves of evaluation models based on M1  
 

 
Fig. 10.  ROC curves of evaluation models based on M2  
 

 
Fig. 11.  ROC curves of the co-forest intelligence model based on M1 
and M2  
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Fig. 12.  ROC curves of the decision tree C4.5 based on M1 and M2  

 

 
Fig. 13.  ROC curves of the SVM model based on M1 and M2  
 
Table. 3. Performances of different prognosis evaluation 
methods of ovarian GCT  

Algorithm Model AUC 
M 1 M 2 

co-forest model 0.916 0.957 
decision tree C4.5 model 0.741 0.862 
support vector machine 0.713 0.798 

 
 
5. Conclusions 
 
Ovarian GCT has limited samples and significant different 
periods of recurrence, resulting in many difficulties of 
prognosis evaluation. In this study, AI theory and machine 

learning technology are introduced into prognosis evaluation 
of tumors, and a prognosis evaluation method of ovarian 
GCT based on the co-forest intelligence model is proposed. 
Some conclusions can be drawn according to experimental 
results.  
 (1) The prognosis evaluation of ovarian GCT based on 
M1, which is standardized and normalized, is poorer than 
that based on M2, which is selected by Log-Rank test. 
Currently, pathological features and clinical features related 
with prognosis of ovarian GCT have not been determined 
completely. Therefore, M1 must have some invalid and even 
interference features. Log-Rank test can eliminate some 
interference features, thus improving the prediction accuracy 
of the model.  
 (2) The co-forest intelligence model can make modeling 
analysis on small-sized dataset and explore effective features 
from candidate feature dataset through automatic learning. It 
overcomes some shortcomings of ovarian GCT prognosis 
(i.e., incomplete determination of relevant pathological and 
clinical features) and achieves satisfying prognosis 
prediction results. The AUCs of co-forest intelligence model 
based on M1 and M2 (0.916 and 0.958, respectively) are far 
larger than those of the decision tree C4.5 (0.741 and 0.862) 
and SVM model (0.713 and 0.798).  
 The proposed prognosis evaluation method of ovarian 
GCT based on co-forest intelligence model not only 
overcomes limited sample data and ambiguous prognostic 
features but also achieves good prediction results. It has high 
practical value in prognosis evaluation. Research 
conclusions are conducive to break bottlenecks against 
prognosis evaluation of ovarian GCT and can help clinicians 
master development laws of ovarian GCT, take the initiative 
in diagnosis and treatment, and increase long-term survival 
rates of patients. However, further improvements are still 
needed. Future studies shall further collect ovarian GCT 
samples to increase the generalization of the prognosis 
prediction model. 
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