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Abstract 
 

In this paper, we investigated deformation in rotating thick-walled circular cylinders of incompressible, isotropic, neo-
Hookean material. We apply the WKB method to the bifurcation analysis of cylinder shell which is subjected an external 
pressure. In the all mode numbers find that present compression inner layer. Amongst other results, we obtained present 
compression outer layer. Finally, we compared the asymptotic results with different mode numbers. 
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1. Introduction 
 
The bifurcation with respect to a circular cylindrical 
configuration of a circular cylinder of incompressible 
rotating elastic material has been examined by several 
previous studies and includes a wide theory of incremental 
nonlinear elasticity. In 1980, Haughton and Ogden [1] 
derived an equation relating angular speed, axial loading, 
and elastic properties and examined its implications given 
known material behavior. Haughton [2] proved that pure 
tensional, longitudinal and breathing mode vibrations cease 
to exist when rotation is initiated. Ogden [3] studied critical 
values of the tension at which bifurcation occurred for a 
general form of the strain-energy function. In 2001, Bigoni 
and Gei [4] investigated bifurcations in velocities from a 
state of homogeneous axisymmetric deformation for a 
coated elastic cylinder that was subjected to axial tension or 
compression. Dorfmann et al. [5] developed a concise 
general theory of nonlinear magnetoelasticity to analyze the 
mechanical response of a circular cylindrical tube under 
steady rotation with respect to its axis in an azimuthal 
magnetic field and a solid circular cylinder also under steady 
rotation about its axis in an axial magnetic field. The WKB 
method is widely applied to fluid stability problems, and [6] 
provide an excellent review of its application in solving the 
eigenvalue problem involving the bifurcation analysis of a 
spherical shell of arbitrary thickness.  
 Fu and Sanjaranipour [7] applied the fore-mentioned 
method to the stability analysis of an everted cylindrical 
tube. Sanjaranipour [8,9] extended the study by Fu and 
applied the method to the buckling analysis of Varga and a 
neo-Hookean material cylindrical shell of arbitrary thickness 
subjected to external hydrostatic pressure.  

Haughton and Chen [10] applied the method for the 
bifurcation analysis of everted cylindrical and spherical 
shells. In 2007, Coman and Bassom [11] applied the WKB 
and boundary layer asymptotic methods to examine these 
issues and compared the wrinkling of a pre-stressed annular 

thin film in tension.  
 Coman and Destrade [12] used the bifurcation of an 
incompressible neo-Hookean thick hyperelastic plate and 
reduced a fourth-order linear eigenproblem that displayed 
multiple turning points. Recently Sanjaranipour et al. [13] 
used the WKB method with repeated roots to describe the 
angle of bending in addition to the azimuthal shear. 
 Section 2 describes the analysis of circular cylindrical 
configurations that is performed with respect to a completely 
general form of incompressible isotropic elastic strain-
energy function. In section 3, it is demonstrated that these 
assumptions yield an eigenvalue problem for a system 
differential equation with variable coefficients, which are 
subsequently simplified by finding a solution with separable 
variables. Section 4 mainly focuses on the application of 
WKB method to the stability analysis of the eigenvalue 
problem section 3.Then in section 4 with the aid WKB 
method for system problem the instability this model. The 
final part of the study discusses the conclusions in 
conjunction with a discussion of the obtained results and 
suggestions for future research. 
 
 
2.  Basic equations 
 
Equations describing deformations are widely-known [14]. 
Consider a circular cylindrical tube of length L in which the 
radii of inner and outer curved surfaces correspond to 𝐴 and 
𝐵, respectively. The undeformed tube is then defined by 
cylindrical co-ordinates(𝑅,Θ,𝑍), as follows: 
 
𝐴 ≤ 𝑅 ≤ 𝐵,                  0 ≤ Θ ≤ 2π,               0 ≤ Z ≤ L. 
 
 Now it is assumed that cylindrical co-ordinates (𝑟, θ, 𝑧) 
describe thecylinder in the current configuration where 
 
𝑎 ≤ 𝑟 = 𝑟 𝑅 ≤ 𝑏,                θ = Θ − ωt,               z = Z. 
 
 Here 𝑎 and 𝑏 represent the new inner and outer radii, 
respectively, of the tube, 𝜔 denotes the angular velocity of 
the rotating tube, and 𝑡 denotes time and this leads to the 
following expression: 
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𝑎 = 𝜇!𝐴,            𝑏 = 𝜇!𝐵, 
 
where 𝜇! and 𝜇! denote constants, which with respect to the 
presentcompression problem, satisfy 0 < 𝜇!, 𝜇! < 1. The 
material of the tube is assumed incompressible, and this 
leads to the following expression: 
 
𝑟! − 𝑎! = 𝑅! − 𝐴! 
 
 Incompressibility implies the absence of a change in 
volume and thus 𝜇! and 𝜇! are related as follows: 
 
𝜇!! = 1 − 1 − 𝜇!! (𝐴/𝐵)! 
 
 Here after, it is assumed that all variables and parameters 
with length dimensions are scaled by 𝐵. Additionally, 𝜆!, 𝜆! 
and 𝜆! denote the principal stretchescorresponding to the 
(𝑟, θ, 𝑧) directions, respectively. This results in the following 
expression: 
 

𝜆! =
𝑑𝑟
𝑑𝑅 ,     𝜆! =

𝑟
𝑅  ,     𝜆! = 1. 

 
With respect to an incompressible isotropic elastic solid, the 
strain-energy function per unit volume corresponds to 
𝑊 = 𝑊(𝜆!, 𝜆!, 𝜆!)and the principal components of the 
Cauchy stress associated with𝜎!! such that the following 
expression holds: 
 
𝜎!! = 𝜎! − 𝑝,      𝑖 = 1,2,3 , 
 
where 
 

𝜎! = 𝜆!  
𝜕𝑊
𝜕𝜆!

,     𝑖 = 1,2,3 , 

 
and 𝑝 denotes the arbitrary hydrostatic pressure. The 
equation ofmotion is reduced as follows: 
 
𝑑𝜎!!
𝑑𝑟 +

1
𝑟 𝜎!! − 𝜎!! = −𝜌𝑟𝜔!, 

 
 Where 𝜌 denotes the uniform density of the material. It 
is assumed that traction is absent on the lateral surfaces of 
the cylinder as follows: 
 
𝜎!!(𝑎) = 𝜎!!(𝑏) = 0. 
 
 
3.  The incremental equations 
 
The position vector 𝒙 of a material particle in the current 
configuration is subjected to an increment corresponding to 
𝒙. It is assumed that 𝒔𝟎 is the corresponding increment in the 
nominal stress in the current configuration𝒔𝟎. 
The equation of motion is expressed as follows: 
 
𝑑𝑖𝑣 𝒔𝟎 = 𝜌𝒙!! ,                                                           (1) 
 
 Where 𝑑𝑖𝑣 denotes the divergence operator relative to 𝒙, 
𝒙!!denotes the incremental acceleration, and the subscript 𝑡 
denotes the materialtime-derivative. The incremental 
boundary conditions on the surface is as follows: 
 
𝒔𝟎

!𝒏 = 𝟎,          𝑟 = 𝑎, 𝑏, 

 
where 𝒏 denotes the unit outward normal. It is assumed 
that 𝒆𝒊, (𝑖 = 1,2,3) correspond to the unit base vectors for 
the(𝑟, θ, 𝑧) directions, respectively. The incremental 
displacement vector is as follows: 
 
𝒙 = 𝑢𝒆! +  𝑣𝒆! + 𝑤𝒆!, 
 
and the incremental acceleration due to the angular speed 𝜔 
and its increment 𝜔 are given as follows: 
 
𝒙!! = 𝑢!! − 2𝜔 𝑤! − 𝜔!𝑢 𝒆! + 𝑣!! + 2𝜔 𝑢! − 𝜔!𝑣 𝒆!

+ 𝑤!!𝒆!, 
 
where the subscript 𝑡 denotes differentiation with respect 
totime. The linearized 𝒔𝟎 is expressed as follows: 
 
𝒔𝟎 = 𝓐 𝚪! +  𝑝  𝚪 − 𝑝𝑰, 
 
where 
 
𝚪, 𝑝, and 𝑰 denote the incrementaldeformation gradient 𝑭, 
the increment in 𝑝 and theidentity tensor, respectively, 
and 𝓐 denotes the fourth-order tensor of fixed-reference 
elastic moduli are defined [1]. 
The matrix of components of 𝚪 with respect to the 
abovebasis is as follows: 
 

𝚪 =
𝑢,! 𝑢,! 𝑢,!
𝑣,! 𝑢 + 𝑣,! 𝑣,!
𝑤,! 𝑤,! 𝑤,!

. 

 
 Additionally, the incremental incompressibility condition 
is as follows: 
 
𝑡𝑟 𝚪 = 0. 
 
 With respect to a neo-Hookean material, the strain 
energy function takes the following form: 
 
𝑊 = 𝜇 𝜆!! + 𝜆!! + 𝜆!! − 3 , 
 
by simply appending the time-dependent term in equation 
(1) and the incremental equations for a rotating thick-walled 
tube were given in an extant study [1] 
 
𝐹!!!! + Σ!𝐹!!! + Σ!𝐹!! + Σ!𝐹! + Σ!𝐹 = 0 ,                         (2) 
 
where 𝐹 = 𝐹(𝑟) corresponds to a prime that denotes 
differentiation with respect to 𝑟 and the following 
expression: 
 

Σ! =
6
𝑟 +

2𝒜 ′!!!!
𝒜!!!!

,    Σ!

=
5𝒜!!!! −𝑚!𝒜!!!! −𝑚!𝒜!!!! + 7 𝑟𝒜′!!!!

𝑟!𝒜!!!!

+
𝒜 ′′!!!!
𝒜!!!!

,             

 
Σ!

= −
𝒜!!!! +𝑚! 𝒜!!!! +𝒜!!!! − 𝑟𝒜!

!!!! +𝑚!𝑟(𝒜′!!!! +𝒜′!!!!)
𝑟!𝒜!!!!

+
𝒜 ′′!!!!
𝑟𝒜!!!!

,  
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Σ! =
−1 +𝑚! (−𝒜!!!! +𝑚!𝒜!!!! + 𝑟𝒜!

!!!!)
𝑟!𝒜!!!!

+
−1 +𝑚! 𝒜 ′′!!!!

𝑟!𝒜!!!!
,  

 
where 𝑚 denotes the longitudinal mode number. Finally, the 
following expression is subject to the boundary conditions: 
 
𝐹!!! + Σ!"𝐹!! + Σ!!𝐹! + Σ!"𝐹 = 0,       𝑟 = 𝑎!, 𝑎! 
 
𝐹!! + Σ!"𝐹! + Σ!"𝐹 = 0,                         𝑟 = 𝑎!, 𝑎! 
 
where 
 
Σ!"

=
−1 +𝑚! 𝒜!!!! + 𝑟(𝑚!𝑟𝜌𝜔! + −1 +𝑚! 𝒜 ′!!!!)

𝑟!𝒜!!!!
, 

 
Σ!!

=
𝒜!!!! −𝑚! 𝒜!!!! +𝒜!!!! + 𝜎! + 𝑟𝒜 ′!!!!

𝑟!𝒜!!!!
     , Σ!"

=
4
𝑟 +

𝒜′!!!!
𝒜!!!!

,   

 

Σ!" =
−1 +𝑚! 𝜎!
𝑟!𝒜!!!!

,                 Σ!" =
2𝒜!!!! − 𝜎!
𝑟𝒜!!!!

.            

 
 

4.  Asymptotic analysis 
 
Following [6], the WKB method is applied to derive 
solutions of the following form: 
 
𝐹 = exp Φ 𝑟 𝑑𝑟!

!!
,      Φ = Φ! +

!
!
Φ! +

!
!!Φ! +⋯,                     

(3) 
 
where it is necessary to determine the functions Φ!, Φ!,.... 
For the purpose of this study, it is sufficient to only examine 
the three leading terms (since !

!! is very small with respect 
to 𝑚 ≫ 1 and 𝑘 ≥ 3). Substituting (3) into the (2) results in 
the following expression with respect to the leading order in 
𝑚: 
𝒜!!!!𝑟!Φ!

! - (𝒜!!!!+𝒜!!!! ) 𝑟!Φ!
! + 𝒜!!!! =0. 

 
 Generally, this corresponds to quadric equations for Φ!,  
and it is expected that four independent solutions are 
obtained as follows: Φ!

(!), 𝑖 = 1,2,3,4, 
 

Φ!
! = −Φ!

! =
1
𝑟 ,      Φ!

! = −Φ!
! =

1
𝑟𝒜!!!!

.  

 
 The second order ordinary differential equation for Φ! is 
the same for both repeated roots and produces two 
independent solutions, and thus, the following expression is 
derived: 
 

Φ!
! = Φ!

! =
𝒜!

!!!!(1 +𝒜!!!!
!)

2𝒜!!!!(1 −𝒜!!!!
!)
,       

 

Φ!
! = Φ!

! =
𝒜!

!!!!

2𝒜!!!!(1 −𝒜!!!!
!)
. 

 
 With respect to the fore-mentioned results, the general 
solution can be derived as follows: 
 

𝐹 = 𝜉 ! 𝐸 ! 𝑟 ,
!

!!!

 

 
where 
 

𝐸 ! 𝑟 = exp Φ ! 𝑟 𝑑𝑟
!

!!
,      Φ !

= Φ!
(!) +

1
𝑚Φ!

(!) +⋯,  
 
for some constants 𝜉(!), 𝑖 = 1,2,3,4. 
 
 The boundary conditions can be expressed as a matrix 
equation of the Form as follows: 
 

Ω!"𝜉(!),      𝑗 = 1,2,3,4,
!

!!!

 

 
where 
 
Ω!"

=

𝛼 ! (𝑎) 𝛼 ! (𝑎)
𝛽 ! (𝑎) 𝛽(!)(𝑎)

𝛼 ! (𝑎) 𝛼 ! (𝑎)
𝛽 ! (𝑎) 𝛽 ! (𝑎)

𝐸(!)𝛼 ! (𝑏) 𝐸(!)𝛼 ! (𝑏)
𝐸(!)𝛽 ! (𝑏) 𝐸(!)𝛽 ! (𝑏)

𝐸(!)𝛼 ! (𝑏) 𝐸(!)𝛼 ! (𝑏)
𝐸(!)𝛽 ! (𝑏) 𝐸(!)𝛽 ! (𝑏)

. 

 
 The functions 𝛼 ! (𝑟) and 𝛽 ! (𝑟) in the above matrix 
are defined as follows: 
 

 𝛼 ! 𝑟 = Φ ! (𝑟) ! + Φ ! 𝑟
′
+
1
𝑟 Φ ! (𝑟) +

𝑚! + 1
𝑟! , 

 

 𝛽 ! 𝑟 = Φ ! 𝑟
!
+ Φ ! 𝑟

′′

+ 3Φ ! 𝑟 +
2 𝑘 + 𝑟!

𝑘 𝑟 1 + 𝑟! Φ ! 𝑟
′
 

 

+
2 𝑘 + 2 𝑟!

𝑘 𝑟 1 + 𝑟! Φ ! (𝑟) !

+
𝑟! − 3 𝑚!𝑟! − 4 𝑘 𝑚!

(𝑘 + 𝑟!)!

−
𝑘!(1 + 2𝑚!)
𝑟!(𝑘 + 𝑟!)! Φ ! (𝑟)  

 
𝑘(1 −𝑚!)
𝑟!(𝑘 + 𝑟!) +

𝑚! − 1
𝑟(𝑘 + 𝑟!) +

𝑚! 𝑟 𝜌 𝜔!

𝑘 + 𝑟! . 

 
A non-trivial solution for 𝜉(!) requires 𝑑𝑒𝑡 (Ω!") = 0, 

that corresponds to the required bifurcation condition in the 
large 𝑚 limit. However, given that 𝐸 ! 𝑎 = 1 and 
𝐸 ! 𝑏 = 𝐸 ! 𝑏  are exponentially large whereas 
𝐸 ! 𝑏 = 𝐸 ! 𝑏  are exponentially small, the four 
equations for 𝜉(!) can be decoupled into two pairs of 
equations as indicated in a previous study [10]. Thus, the 
equations can be reduced as follows: 
𝜇! = 𝛾! +

𝛾!
𝑚 +

𝛾!
𝑚! +⋯, 
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where 
 
𝛾! = 0.543689,    𝛾!

= 0.238662 −1.47573
+ 0.113207 𝜔!! ,   

 
  𝛾! = 0.238662 15.5584 + 0106799 𝜔!!

− 0.0206285  𝜔!! . 

 
where  𝜔! = 𝐴𝜔 𝜌. 
 With respect to 𝜔! = 0, this fact is confirmed by results 
obtained in an extant study [1]. Table 1 illustrates 𝜇! for a 
given 𝜔! and mode number 𝑚. It should be noted that with 
respect to all the values denoted by 𝜔!, present compression 
𝜇! is obtained for different mode numbers. 

 
Table 1. The present compression 𝜇! on the boundary conditions with respect to 𝜔! for 𝑚 = 4,8,10,15,20. 

𝜔! 𝜇!(𝑚 = 4) 𝜇!(𝑚 = 8) 𝜇!(𝑚 = 10) 𝜇!(𝑚 = 15) 𝜇!(𝑚 = 20) 
0.2 0.3980 0.5289 0.5412 0.5503 0.5517 
0.4 0.3964 0.5282 0.5406 0.5499 0.5515 
0.6 0.3948 0.5275 0.5400 0.5495 0.5512 
1 0.3919 0.5260 0.5389 0.5488 0.5506 

1.5 0.3878 0.5242 0.5375 0.5478 0.5499 
2 0.3842 0.5225 0.5361 0.5469 0.5492 

 
 Table 2 lists 𝜇! for various 𝐴 mode numbers 𝑚 
and 𝜔! = 1. In addition to the observations as shown in the 

table an upper bound 𝜇! is likely to exist and corresponds to 
0.6553. 𝑚 → ∞,𝐴 → 1). 

 
Table 2. The present compression 𝜇! on the boundary conditions with respect to 𝐴 for 𝑚 = 4,8,10,15,20. 

𝐴 𝜇!(𝑚 = 4) 𝜇!(𝑚 = 8) 𝜇!(𝑚 = 10) 𝜇!(𝑚 = 15) 𝜇!(𝑚 = 20) 
0.2  0.9829 0.9854 0.9857 0.9859 0.9860 
0.3 0.9611 0.9669 0.9675 0.9680 0.9681 
0.5 0.8879 0.9051 0.9070 0.9085 0.9087 
0.7  0.7650 0.8035 0.8076 0.8109 0.8115 
0.9  0.5606 0.6435 0.6521 0.6587 0.6600 

 
Fig. 1. Plot of the values of 𝜇! with respect to 𝐴 for 𝜔! = 0, (left), 𝜔! = 1, (right) and 𝑚 = 4,8,10,15,20. 
 
 
5. Concluding remarks 
 
This study examined the deformation in rotating thick-
walled circular cylinders of incompressible isotropic neo-
Hookean material. First, a system of differential equations 
with related boundary conditions was derived. Second, it 
was demonstrated that the WKB method could be typically 
applied to obtain a first-order approximation of the 
bifurcation criterion. The results indicated that the 
dependence of 𝜇! involves a boundary layer structure. 
Additionally, simple asymptotic expressions for the 
bifurcation condition were obtained. 

 Furthermore, a higher-order asymptotic expansion was 
obtained, and the deduced expansion provided guidance in 
deriving the correct approximation for 𝜇!. Mode numbers 
tend to infinity, and thus, in the special case corresponding 
to 𝜔!, the obtained outer layer approximately corresponded 
to 0.5651(𝑚 → ∞,𝐴 → 1). 
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