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Abstract 
 

In this work the antimonotonicity phenomenon is experimentally investigated in the case of a driven nonlinear R-L-Diode 
circuit, with or without a DC bias voltage. The nominated electronic circuit is one of the simplest and extensively studied 
nonlinear circuits that can be made in breadboard. Due to this fact, this is not an introductory paper but focuses 
specifically to the study of how the frequency of the sinusoidal voltage source acts to the dynamical behavior of the 
circuit, using appropriate nonlinear tools such as the bifurcation diagram, phase portrait, return map and correlation 
dimension. Furthermore, except of the antimonotonicity, a number of other interesting phenomena related to chaos has 
also been observed.  
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1. Introduction 
 
During the last decades, the fact that several nonlinear 
electronic circuits exhibit chaotic behavior has attracted the 
interest in the academic and industrial community. This fact 
has led in observing in electronic circuits, chaotic 
phenomena [1] that have been reported in literature, such as 
well-known routes to chaos, period doubling and 
intermittency, quasiperiodicity route to chaos, crisis and 
antimonotonicity [2-7]. Today, due to the introduction of 
digital oscilloscopes, those effects can be accurately 
depicted utilizing computer data analysis without the need of 
complex triggering systems. 
 The sinusoidally driven Resistor-Inductor Diode (RLD) 
circuit, due to its simplicity is one of the most extensively 
studied electronic circuits presenting complex dynamics. 
The proposed non-autonomous circuit consists of a p-n 
junction diode in series with an inductor and a resistor, 
which presents nonlinear dynamic behavior and exhibits 
chaotic phenomena at higher input frequencies of the voltage 
source than other nonlinear electronic circuits do. Due to this 
fact, the RLD circuit can be used as a simple yet powerful 
tool for understanding possible chaos applications in random 
numbers generators, encryption and secure communication 
schemes. Also, regarding the investigation of chaotic 
behavior in the RLD circuit, many different approaches can 
be distinguished, focusing not only on the exploration and 
understanding of its chaotic properties but also to the reason 
why such nonlinear effects, are present [8, 9].  
 Antimonotonicity is a fundamental phenomenon in 
bifurcations for a large class of nonlinear dissipative 
systems, where periodic orbits are not only created but also 

destroyed, as a control parameter of the system increases in a 
monotone way. As an example of a system depicting period 
doubling route to chaos is the logistic map 1 (1 )n n nx rx x+ = − . 
As the parameter r in that map increases, monotone behavior 
in the sense that the created periodic orbits are never 
destroyed [10] can be noticed. On the other hand, a 
nonlinear dynamical system can depict not only a monotone 
period doubling route to chaos but can also depict a reverse 
bifurcation sequence where periodic orbits are not only 
created but also destroyed [11]. Antimonotonicity was the 
name given by Dawson et. al. in [12] to the above chaotic 
phenomenon that can be found both in two dimensional 
systems [11, 13] and one dimensional maps [12,14]. 
Moreover, since one-dimensional maps must be 
noninvertible for chaotic dynamics to occur, it is more 
difficult to rigorously establish a conclusion concerning 
antimonotonicity for a one dimensional map than it is for a 
two-dimensional one. In the two dimensional case 
antimonotonicity is related with the homoclinic tangency of 
a periodic point. In higher scalar maps, Dawson et. al. in 
[15] introduced the dimple formation geometrical 
mechanism to explain the phenomenon. More general, Bier 
and Bountis [16] stated that the necessary condition for the 
antimonotonicity to occur in any nonlinear system is the 
state equations invariance under an existent symmetry 
transformation in the system. Moreover, it has been shown 
in [17] that the variation of two parameters in a nonlinear 
system is indicative for the system that inverse period 
doublings will be presented. A general form of a bifurcation 
diagram depicting the phenomenon of antimonotonicity, 
while a control parameter of the system is varying in a 
monotonous way, is shown in Fig. 1. In the “period-N 
chaotic bubble” case the system leaves the period N state 
following the route to chaos with period doublings. After the 
chaotic regime it ends again in the period-N state having 
followed reverse period doublings.  
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Fig. 1. Period N = 1 chaotic bubble. 
  
 
 In this paper, the experimental study of the RL-Diode 
circuit not only confirms the above work, but also extends 
the investigation of the RLD dynamic behavior regarding 
antimonotonicity. Using the frequency of the input signal as 
a control parameter of the system, bifurcation diagrams are 
constructed in order the antimonotonicity to be revealed.  
 The paper is organized as follows. Section 2 provides a 
brief description of the RL-Diode circuit, which is used in 
this work. In Section 3 the experimental results of the 
confirmation of the antimonotonicity phenomenon in the 
proposed circuit with and without a DC bias voltage are 
presented. Finally, the conclusive remarks are drawn in the 
last Section. 
 
 
2. RLD Circuit Description 
 
The schematic diagram of the resistor–inductor–diode 
(RLD) circuit used in this work, in order to investigate the 
phenomenon of antimonotonicity, is presented below in Fig. 
2.  
  

 
Fig. 2. RLD chaotic oscillator. 
 
 
 The circuit consists of a linear resistor R, in series with a 
linear inductor L and a diode D driven by an AC-voltage 
source υin = Vinsin(ωt). Diode type is 1N4005 and is the only 
nonlinear circuit element. The input signal is a sinusoidal 
voltage υin with frequency fin, while υout is the output voltage 
of the signal across the resistor R. The element values 
chosen for R, L and D in each case are not chosen in random. 
They have been picked by try and error method using a 
digital oscilloscope connected at υin and υout terminals and 
observing the Lissajous curves generated by altering the 
amplitude υin. When circuit is not in chaotic state, Lissajous 

curves generated are stable indicating that between input and 
output, only a time delay of some sort occurs (Fig. 3). As the 
input voltage is altered monotonically, Lissajous curves 
reveal how period doubling bifurcations and reversals look 
on an oscilloscope screen (Fig. 3). 
 To the trained eye, when Lissajous curves start to get 
wobbly, this is an indication of a possible chaotic operation. 
A strong argument to support this is that since Lissajous 
curves are constructed by υin and υout and υin is always a 
smooth sinusoidal waveform, “wobbliness” is generated by 
υout, dictating that υout has become aperiodic. Of course, there 
is a need to examine the υout time series for the presence of 
chaos. In order to do that the appropriate time series is 
captured by taking account of the “wobbliness” of the 
constructed Lissajous curves. This surprisingly helpful 
property of the Lissajous curves dictates that they must be 
some sort of phase space projection to a plane. To verify 
this, we must depict the system’s dynamics. In order to do 
that we use the diode’s model proposed in [18], where the 
nonlinear element is considered as a nonlinear capacitor in 
parallel with a nonlinear resistor. For that purpose the 
characteristic i-υ curve of the specific diode is used in order 
to determine the nonlinear resistance. Nonlinear capacitive 
properties of the diode are derived from the properties of the 
semiconductor material of the diode when an ac signal acts 
to the transport carriers causing recombinations around the 
p-n junction, revealing chaotic behavior in specific 
conditions. 

 
(a) 

 
(b) 

Fig. 3. Lissajous curves υin vs. υout for (a) period-2 operation and (b) for 
chaotic operation. 
 
 
 By applying Kirchoff’s laws to the circuit of Fig. 2 the 
following dimensionless equations are derived. 
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 The variables in system (1) are: x = iωL/VJ, y = υ/VJ, 
where i and υ are the current in the RLD circuit and the 
voltage across the diode D respectively. Also, τ = ωt and VJ 
is the junction potential. Furthermore, Eqs. (1) and (2) 
parameters are: B = Vin/VJ, β = ωL/R, α = eVJ/(nkT), γ = βΙSR/ 
VJ , c1 = RβωC0, and c2 = Cb/C0, where Cb is the zero voltage 
bias capacitance. Cd = C0exp(eV/nkT) is a second capacitive 
effect arises when the finite response time of the mobile 
charges to the changing field is considered. 
 
 
3. Experimental Observation of Antimonotonicity 
 
In this section, the experimental observation of the 
antimonotonicity phenomenon is studied in two different 
cases. In the first one the classical R-L-Diode circuit, which 
was described in the previous section, is studied regarding 
the aforementioned phenomenon. For this reason, by 
keeping constant the values of circuit’s resistance and 
impedance, bifurcation diagrams of voltage across the 
resistor (υout) versus the frequency (f) of the sinusoidal 
voltage source, is produced, for various values of source’s 
amplitude Vin. In the same way, by adding a DC bias voltage 
VDC in series with the other circuit’s elements (Fig. 2), the 
antimonotonicity phenomenon is experimentally 
investigated again for different values of the DC source’s 
value VDC. 
 Our experimental setup shown in Fig. 4 is composed of a 
1N4005 silicon rectifier diode, an 8.5 mH inductor with an 
internal resistance of 20 Ω and a resistor R in series with the 
inductor and the diode. In the no DC bias voltage case, a 
resistor R = 330 Ω is used, which is substituted by an R = 80 
Ω resistor in the DC bias case. The resonator is driven by an 
arbitrary waveform generator. The output of the generator is 
buffered from the resonator input using an LF356N op-amp. 
The voltage drop across the resistor is collected by an 
oscilloscope probe and is digitized by the oscilloscope with 
8 bit vertical resolution at 200 Msamples/sec. A computer is 
used to control both the waveform generator and the digital 
oscilloscope and also to acquire and process the generated 
data. 
 In order to increase the vertical resolution of the 
digitized signal, oversampling and decimation of the voltage 
drop across the 330Ω resistor are executed. Oversampling 
and decimation is a common method of increasing vertical 
resolution in modern digital oscilloscopes but here, instead 
of digital signal processing, a computer script is used for 
designation. This way, 10 bit vertical resolution, which helps 

in the true maxima approximation of time-series, is 
achieved. The time-series, is then processed using TISEAN 
package [19] in order to locate the local maxima that will be 
used to plot the bifurcation diagrams and return maps 
presented below. 
 

 
Fig. 4. Experimental setup.  

 
 

3.1 Antimonotonicity in the R-L-Diode Circuit Without a 
DC Bias Voltage 
Βy keeping constant the circuit’s parameters R = 330 Ω, L = 
8.5 mH and diode 1N4005, as illustrated in Fig. 2 the 
dynamic behavior of the circuit is investigated. Bifurcation 
diagrams of the maxima of voltage (Vout) across the resistor 
versus the frequency (f) of the sinusoidal voltage source, for 
various values of source’s amplitude (Vin), are shown in Fig. 
5.  
 At low values of amplitude (Vin) the circuit is always in 
period-1 steady state and as a consequence it never 
bifurcates, as it is shown in Fig.5(a), for Vin = 0.8 V. For 
these values of drive amplitude (Vin) the diode is 
predominantly reverse biased and essentially acts as a high 
impedance device. However, as the value of amplitude (Vin) 
increases period doubling bifurcations occur and the 
antimonotonicity phenomenon begins to form. In Fig. 5(b) 
an example of a period-8 bubble is displayed, for Vin = 2.1 
V. Specifically, by constructing the relative bifurcation 
diagram, the scheme period-1 → period-2 → period-4 → 
period-8 → period-4 → period-2 → period−- is revealed. 
Furthermore, in Fig. 5(c) the cascades continue with the 
appearance of two period-2 bubbles at Vin = 2.4 V, in each 
one of the two main branches in the region of f∈ [180 kHz, 
290 kHz]. Therefore, for low values of drive amplitude (Vin) 
a series of forward and inverse bifurcations occur in 
frequency bands, which are increased with the increasing of 
the amplitude (Vin). These kind of periodic bubbles have 
been observed in many other systems, such as discrete maps 
[20] and circuits [21]. 
 Figures 5(d)-(f) display the accumulation of bubbling 
that has led to the chaotic bands. In more details, for Vin = 
2.7 V, as it can be shown in the bifurcation diagram of Fig. 
5(d), a visible period doubling sequence leads the system to 



P. A. Daltzis, N. A. Gerodimos, C. K. Volos, H. E. Nistazakis and G. S. Tombras/ 
Journal of Engineering Science and Technology Review 11 (2) (2018) 72-81 

 

	

75 

a chaotic region for f∈ [185 kHz, 280 kHz] and then an 
inverse period doubling sequence drives the system back to 
the initial period-1 steady state. In this way the well-known 
period-1 chaotic bubble has been configured. By increasing 
the value of amplitude (Vin) the chaotic bands expand as 
illustrated in Fig. 5(e) and Fig. 5(f). Also, phenomena related 
with chaos theory are also observed, such as a tangent 

bifurcation [22], which latches the circuit into a period-3 
region, and the hysteresis phenomenon [23], which is 
explained as a result of the intersection of the unstable 
trajectory of period-3 with the chaotic attractor. So, as the 
amplitude (Vin) increases, a more complicated circuit’s 
dynamic behavior is observed in a wider range of frequency. 

 

 
Fig. 5. Experimental bifurcation diagrams of voltage (Vout) versus frequency (f) of the circuit of Fig. 2, for R = 330 Ω, L = 9.5 mH and (a) Vin = 0.8 V, 
(b)  Vin = 2.1 V, (c) Vin = 2.4 V, (d) Vin = 2.7 V, (e) Vin = 4 V and (f) Vin = 6 V. 
 
 
3.2 Antimonotonicity in the R-L-D Circuit with a DC 
Bias Voltage  
In this section, the R-L-Diode circuit’s dynamic behavior in 
regards to the signal of a DC bias voltage is studied. Figure 6 
displays the bifurcation diagram of the maxima of the 
voltage across the resistor (Vout) versus the signal of the DC 
voltage source (VDC), for R = 80 Ω, L = 9.5 mH, Vin = 2.5 V 
and f = 180 kHz. A period-1 chaotic bubble has been 
configured, as the signal of the DC voltage source (VDC) 
increases in the range VDC ∈ [−1 V, 0.5 V]. In more details, 
the circuit commences with a period-1 limit cycle for VDC = 
−1V. Then, the circuit undergoes a visible period doubling 

route to a chaotic region, which is interrupted by windows of 
periodic behavior. As the value of the signal VDC further 
increases the system enters to a period-2 region. Another 
period doubling cascade commences when VDC = −0.115 V. 
This cascade continues into a chaotic regime. At VDC = 0.069 
V, a tangent bifurcation occurs latching the circuit into a 
period-3 region. A period-6 steady state is subsequently born 
at VDC = 0.155 V. So, forward period doubling bifurcations 
drive the circuit into a chaotic region, from which it exits to 
a period−1 state at VDC = 0.408 V with inverse period 
doublings
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.  
 

 
Fig. 6. Experimental bifurcation diagram of voltage (Vout) versus the signal of the DC voltage source (VDC), of the circuit of Fig. 2, for R = 80 Ω, L = 
9.5 mH, Vin = 2.5 V and f = 180 kHz. 

 
 By choosing various values of the signal of the DC bias 
voltage (VDC), in the range of VDC∈ [−1 V, 0.5 V], a series of 
bifurcation diagrams of the voltage (Vout) versus the 
frequency (f) of the sinusoidal voltage source are captured 
(Fig. 7). At low values of the DC bias voltage (VDC) the 
circuit is always in period-1 steady state and as a 
consequence it never bifurcates, as it is shown in Fig. 7(a), 
for VDC = −1 V. However, as the value of the DC bias 
voltage (VDC) increases, period doubling bifurcations occur 
and the antimonotonicity phenomenon begins to form. In 
Fig. 7(b) an example of a period-2 bubble, which is also 
called as primer bubble [50], is displayed for VDC = −0.6 V, 
while in Fig. 7(c) a period−4 bubble is illustrated for VDC = 
−0.55 V. Furthermore, in Fig. 7(d) the cascades continue 
with the appearance of a period-8 bubble at VDC = −0.51 V, 
as well as a third period doubling in each one of the two 
main branches in the region of f ∈ [173.33 kHz, 221.60 
kHz] is displayed.  
 Therefore, for low values of the DC bias voltage (VDC) a 
series of forward and inverse bifurcations occurs again in 
frequency bands, which increase with the increasing of the 
DC bias voltage (VDC). Figures 7(e) - (g) display the 
accumulation of bubbling that has led to the chaotic bands. 
In more details, for VDC = −0.5 V, in the case of the 
bifurcation diagram of Fig. 5(e), a visible period doubling 
sequence leads the system to a chaotic region for f ∈
[169.74 kHz, 205.92 kHz] and then inverse period doubles 
driven the system back to initial period-1 steady state. So, in 
this way a period-1 chaotic bubble has been configured. The 
expansion of the chaotic bands is illustrated in Fig. 7(f) - (g), 
as the value of amplitude (VDC) increases. Also, phenomena 
related to chaos theory are also observed, such as a tangent 
bifurcation [22], which latches the circuit into a period-3 
region, and the hysteresis phenomenon [23]. So, as the DC 

bias voltage (VDC) increases, a more complicated circuit’s 
dynamic behavior is observed in a wider range of frequency. 

Experimental phase portraits of (υout) versus (υin) for 
different amplitude values of input voltage signal (Vin) are 
illustrated in Fig. 8. Also, the experimental first return maps 
of Vmax(n + 1) versus Vmax(n), can be shown respectively in 
the same figure, by keeping constant the value of  R = 80 Ω, 
L = 9.5 mH, Vin = 2.5 V and VDC = −0.45 V, for various 
values of frequency. From the aforementioned figure the 
forward and inverse bifurcations is confirmed as it is 
expected according to the bifurcation diagram of Fig. 7(f), 
for the chosen value of VDC = −0.45 V. Furthermore, the 
folding of the attractor in the (υin, υout)-plane, as the 
frequency increases, has been illustrated in Fig. 8. 
 This is a good point to investigate the presence of chaos 
in the time series collected, in order to plot Fig. 8(d). The 
investigation uses the correlation dimension which is 
calculated by the delay vector reconstructed attractor 
through analysis using TISEAN [19] according to [24]. 
Correlation dimension d is the invariant measure of 
dimensionality of the space occupied by random points and 
is a type of fractal dimension of the strange attractor. As it is 
described in [24], the correlation sum local slopes for 
different values ε and m in x-axis log scale is plotted and 
illustrated in Fig. 10, in order to verify the existence of a 
plateau with constant scaling exponent  in a scale range, for 
all embedding dimensions larger than mmin > D. As it can be 
seen the curves in the plateau of  the above Fig. 10 are flat 
and are also collapsed for a wide range of length scales in x-
axis, indicative that there is no (e, m) dependence for m > 
mmin. From nonlinear time series analysis theory this scaling 
exponent is thus the appropriate parameter in order to 
estimate the correlation dimension of the system attractor. 
To estimate correlation dimension, we plot the double 
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logarithmic plot of C(m, ε) versus ε (Fig. 11). Then a 
function f(x) = axb is fitted in the linear part of the double 
logarithmic plots, where C(ε) follows a power law as it is 

described in [24]. The correlation dimension calculated 
using the aforementioned steps is D = 2.09, thus RLD circuit 
is producing a chaotic time series. 

 
 
 

 
Fig. 7. Experimental bifurcation diagrams of voltage (Vout) versus frequency (f) of the circuit of Fig. 2, for R = 80 Ω, L = 9.5 mH, Vin = 2.5 V and (a) 
VDC = -1 V,  (b) VDC = -0.6 V, (c) VDC = -0.55 V, (d) VDC = -0.51 V, (e) VDC = -0.50 V,  (f) VDC = -0.45 V, (g) VDC = 0 V and (h) VDC = 0.25 V. 
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Fig. 8. Experimental phase portraits of (υout) versus (υin) and the respective experimental return maps of Vmax(n + 1) versus Vmax(n), for R = 80 Ω, L = 
9.5 mH, Vin = 2.5 V, VDC = -0.45 V and (a) f = 90 kHz (period-1), (b) f = 120 kHz (period-2), (c) f = 140 kHz (period-4), (d) f = 177 kHz (chaos), (e) f 
= 230 kHz (period-4), (f) f = 300 kHz (period-2) and (g) f = 330 kHz (period-1). 

 
 

  
           (a)            (b) 
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            (c)            (d) 

 
          (e) 

Fig. 9. Time series for f (a) 90 kHz (period-1), (b) 120 kHz (period-2), (c) 140 kHz (period-4), (d) 177 kHz (chaos), (e) 230 kHz (period-4). 
 
 

 
Fig. 10. Local slopes of correlation sums vs. ε .                                          Fig. 11. Correlation sums vs. ε . 
              (Embedding dimensions 1-10)                                                            (Embedding dimensions 1-10)                                                                                                                                                 

 
  

4. Conclusion 
 
In this work the antimonotonicity phenomenon was studied 
in the case of a driven R-L-Diode circuit. The substantial 
number of physical or mechanical systems that exhibit both 
forward and reverse period doubling cascades motivates the 
study of this phenomenon. The chosen circuit has a long 
history of study, because it is one of the experimentally 
simplest nonlinear circuits that can be constructed. Also, a 
variety of phenomena related to nonlinear dynamics and 
chaos has been observed with this circuit. However, in this 
work our investigation was focused on the antimonotonicity 
phenomenon, which this circuit presents, as the frequency of 
the sinusoidal source increases, when the circuit has (or not) 
a DC bias voltage (VDC). This experimental investigation has 
not been previously presented in literature and interesting 
phenomena has been reported for the first time.  
 Experimental bifurcation diagrams of the voltage across 
the resistor (Vout) versus the frequency (f), with or without a 
DC bias voltage was captured. From these diagrams a 
complex bubbling process, including forward and reverse 
pitchforks was displayed. Having as control parameter of the 

system the input amplitude (Vin) or the DC bias voltage 
respectively, the dynamic behavior of the system is 
investigated through bifurcation diagrams in two cases: a) 
By changing the input amplitude (Vin) without DC bias 
voltage and b) by changing the value of bias voltage when 
the input sinusoidal signal has a DC component. In both 
cases a series of forward and inverse bifurcations occur in 
frequency bands, which increase with the increasing of the 
amplitude (Vin) or the bias voltage (Vd) respectively.  
 Also, phenomena related to nonlinear dynamics were 
also observed, such as a tangent bifurcation, which latches 
the circuit into a period-3 region, and the well-known 
hysteresis phenomenon. So, our investigation is evidence 
that homoclinic tangencies were made and broken through a 
dimple formation process analogously to the process that 
occurs in other physical systems. Experimental phase 
portraits of the voltage across the resistor (Vout) versus the 
amplitude (Vin) of the voltage source and the respective 
experimental return maps of Vmax(n + 1) versus Vmax(n) 
confirmed the expected from the bifurcation diagrams 
circuit’s dynamical behavior, while the folding of the 
attractor in the (υin, υout)-plane, as the frequency increasing, 
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was also investigated. Also, presence of chaos is verified by 
calculating a correlation dimension of 2.16. Therefore, this 
work proves that in addition to the amplitude (Vin) or the bias 
voltage (Vd) dependence of the input sinusoidal signal, 
which have been studied thoroughly in previous published 
works, RL-Diode dynamical behavior is also strongly 
depended on the frequency of the input sinusoidal voltage 
source. Furthermore, as the amplitude (Vin) or the bias 
voltage (VDC) increased, the frequency range, in which the 
antimonotonicity phenomenon observed was also increased. 
In this way, this circuit could operate in higher frequencies, 

than the most well-known nonlinear circuits, making it 
capable of using it in real world chaos-based applications, 
such as encryption, random number generation etc. Also, 
due to its simple structure and its common elements, this 
circuit could be a good candidate to be used as a nonlinear 
circuit for educational purposes. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  
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