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Abstract 
 

This work presents a hybrid approach based on the genetic algorithm (GA) and moth swarm algorithm (MSA), namely 
genetic moth swarm algorithm (GMSA). Minimizing the electrical power loss in radial distribution systems (RDN) 
within the framework of system operation and under system constraints is the main objective of this study. In GMSA, the 
global search ability has been regulated by the incorporation of GA operations by the adaptive mutation operator on the 
reconnaissance phase using genetic pathfinder moths. In addition, the selection of artificial light sources has been 
expanded over the swarm. The representation of individuals within the three phases of MSA has been modified in term of 
quality and ratio. Elite individuals have been used to play different roles in order to reduce the design space and thus 
increase the exploitation ability. GMSA and other optimization methods have been carried out on the IEEE 33 and 69-bus 
power systems. The reduction of power loss and total system cost in addition to the improvement of the minimum bus 
voltage are simulated for the competitive algorithms under several power system constraints and conditions. The 
computational results proved the superiority of the GMSA compared with other techniques. 
 
Keywords: Radial distribution system, optimal capacitor and DG location, loss reduction, Genetic-Moth Swarm Algorithm 
____________________________________________________________________________________________ 

1. Introduction 
 
Most of the electrical distribution networks feed inductive 
loads at low voltage levels. This effect leads to higher 
currents and power losses accompanied by voltage drop 
whereas about 13% of the total power generation has been 
considered as line losses [1]. Therefore, these losses must be 
diminished to improve the power system stability and 
reliability, power factor and voltage profile. Connecting 
distributed generation resources or/and shunt capacitors is 
considered as one of the basic methods which have been 
used in distribution systems to solve such problems [2, 3].  
 Shunt capacitors are considered as the best-known 
technique, which used in RDN for reactive power 
compensation. Different heuristic techniques have been 
developed to solve the optimal power flow problems using 
capacitors, as commonly used for reactive power 
compensation in dynamic and static optimization modes [4-
8]. However, the random locating of capacitors can cause 
more voltage drop and higher power losses. Moreover, the 
capacitor allocation problem has a combinatorial nature 
because capacitor locations and sizes are discrete variables 
[4, 5]. On the other hand, the utilizing of DG resources and 
inexpensive renewable sources in electrical networks with 
the development of technologies are increasing. This 
development provides many advantages for the electrical 
network such as increasing reliability, active and reactive 
power losses reduction and improving voltage profile. 

However, these merits occur depend on the optimal placing 
and sizing of DG sources [9]. Therefore, several 
optimization algorithms have been proposed in recent years 
to solve the optimal of DG resources and shunt capacitor 
placement and sizing problems in radial and ring distribution 
systems for maximizing their benefits such as Flower 
pollination algorithm (FPA) [9], particle swarm optimization 
(PSO) [10, 11], discrete particle swarm optimization (DPSO) 
[12], genetic algorithm (GA) [13], teaching-learning-based 
optimization (TLBO) [14], artificial bee colony (ABC) [15], 
cuckoo search algorithm (CSA) [16], gravitational search 
algorithm (GSA) [17], modified monkey search (MMS) [18], 
whale optimization algorithm (WOA) [19], improved 
harmony algorithm (IHA) [20], moth swarm algorithm 
(MSA)  [21], direct search algorithm (DSA) [22], 
differential evolution algorithm (DEA) [23], simulated 
annealing (SA) [24], plant growth simulation algorithm 
(PGSA) [25], fuzzy reasoning (FRB) [26],  improved binary 
particle swarm optimization (IBPSO) [27], and fuzzy-GA 
[28] have been presented to deal with the problem of  the 
DG and capacitor allocation. However, some of these 
algorithms are not highly effective as the power losses still 
have high values. Other algorithms appear to be effective, 
but they may not achieve the optimal cost value. GMSA is 
developed based on the incorporation of GA operations with 
adaptive mutation operator on the reconnaissance phase 
using genetic pathfinder moths and the expanding of 
artificial light sources over the swarm. 
 In this paper, GMSA and four heuristic search 
algorithms are presented to minimize the system power 
losses, decrease the total cost and maintain the voltage 
profile for various electrical distribution systems. It is tested 
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on multiple IEEE standard distribution systems i.e., (33and 
69-bus).  In addition, the obtained results from the proposed 
approach are compared with those obtained from other 
algorithms to confirm its superiority. The article is organized 
as follows; section.2 provides the objective function 
formulation. GMSA algorithm is represented in section 3. In 
section.4, the implementing of GMSA pseudo code for 
solving the DG and capacitor allocation problem has been 
presented. Section 5 shows the numerical results of the 
proposed technique applied on multiple IEEE standard 
systems. The last section concludes the results and 
advantages of the proposed method.  
 
 
2. Problem Formulation 

 
2.1. Load flow calculation 
The modern algorithm called backward/forward sweep [29] 
is used in this work to analyse the power flow in the tested 
IEEE distribution systems. The active power flow (Pk+1) 
and reactive power flow (Qk+1) in RDN are calculated by (1) 
and (2) derived from single-line diagram as shown in Fig. 1. 

Pk, Q k Pk+1, Q k+1

Rk+ JX k

PLk+ JQ Lk PL(k+1)+ JQ L(k+1)

Vk Vk+1

 
Fig. 1. Simple radial distribution system 
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2
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where k is the sending end and k+1 is the receiving end. 
Voltages of a transmission line and real power losses in the 
line can be calculated from (3) and (4) respectively: 
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2 + Xk
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2)
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            (3) 

 

	  
Ploss(k ,k+1) = Rk *

(Pk
2 +Qk

2)
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2                         (4) 

 
 The total system loss is calculated by summing all line 
losses in the system as shown in (5): 

	  
PTloss = Ploss(k ,k+1)

k=1

n−1

∑                               (5) 

 
2.2. Objective Functions 
The main aim of the objective function of the optimal DG 
and capacitor placement problem is to minimize the total 
cost per year by reducing the real power losses and the cost 
of installing capacitors subjected to voltage and reactive 
power limits. Hence, the multi-objective functions have been 
performed by using the following mathematical statement: 
 

  Minimize f =min(PT  loss)                     (6) 

2.3. Constraint Conditions 
The objective function is subjected to the following 
constraints: 

 
2.3.1. Active and reactive power balance 
The following relation could be established for maintaining 
the balance between generation and consumption. 
 

 
Psys + PDG = Pd + PTloss                         (7) 

 

 
Qsys +QDG +Qcap =Qd +QTloss                  (8) 

 
 The constraints of DG capacities are as follows: 

 

  PDG
min ≤ PDG

k ≤ PDG
max                          (9) 

 

  QDG
min ≤QDG

k ≤QDG
max                                      (10) 

 
2.3.1 Voltage constraint 
The bus voltage magnitude of each bus must be maintained 
within the following range: 
 

  
Vmin ≤ Vk ≤Vmax                           (11) 

 
where Vmax and Vmin are the maximum and minimum values 
of bus (k) voltages. The lower and upper values are taken as 
0.9 and 1.05 Pu, respectively. 

 
2.3.2 Total reactive power constraint 
The total injected reactive power is limited by (12). 
 

	 
Qfc ≤ QLk

k=1

n

∑                              (12) 

 
3. The proposed genetic moth swarm algorithm 

 
3.1. Genetic algorithms 
Genetic algorithms (GAs), initially introduced by John 
Holland as the main global optimization technique. These 
algorithms have been applied successfully to solve a large 
number of problems in different real world fields by 
simulating the natural evolution systems. The recombination 
operation produces offspring that carry a combination of 
genetic material information from each parent where 
crossover operations are applied to exchange the 
chromosomes. The natural selection determines the 
evolution where the survival of the fittest. Therefore, a 
suitable selection strategy is then used determine the 
solutions that survive to the next generation based on their 
fitness values. The mutation operation is the main genetic 
operator that can achieved some diversity in the population. 

 
3.2. Moth Swarm Algorithm 
The moth swarm algorithm has been presented in 2016 by 
Al-Attar et. al [30]. It is inspired from the orientation of 
moths towards moonlight. The available solution of any 
optimization problem using MSA is performed by the light 
source position, and its fitness is the luminescence intensity 
of the light source. Furthermore, the proposed method 
consists of three main groups, the first one is called 
pathfinders which are considered a small group of moths 
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over the available space of the optimization. The main target 
of this group is to guide the locomotion of the main swarm 
by discriminating the best positions as light sources. 
Prospectors group is the second one which has a tendency to 
expatiate in a non-uniform spiral path within the section of 
the light sources determined by the pathfinders. The last one 
is the onlookers, this group of moths move directly to the 
global solution which has been acquired by the prospectors. 

 
3.3. The genetic moth swarm algorithm 
The proposed hybrid based algorithm aims to integrate 
advantages of the well-known GA in term of sharing 
information and global search ability to find the optimal 
value of a given function using the following steps: 

 
3.3.1 Initialization 
Initially, the positions of moths are randomly created for 
dimensional (d) and population number (n) as seen in (13). 

 

	  

xij = rand[0,1].(x j
max − x j

min )+ x j
min∀i ∈ 1,2,...,n{ },

j ∈ 1,2,...,d{ }  

(13) 

 
where, 𝑥!!"#  and 𝑥!!"#  are the upper and lower limits, 
respectively. Afterwards, the type of each moth is selected 
based on the determined fitness. Consequently, the worst 
moths is selected as pathfinders that modified to act 
genetically in the following reconnaissance phase. In the 
next two phases, the best individuals of the swarm are 
regarded as prospectors and onlookers, respectively, 
according to their fitness. In addition, each moth in the 
modified algorithm has its own light source which is 
available to share with others in the swarm. 

 
3.3.2 Genetic Reconnaissance phase 
The moths may be concentrated in the regions which seem 
to be a good performance. Therefore, the swarm quality for 
reconnaissance may be decreased during processing the 
optimization and this process may lead to a stagnation case. 
To avoid the early convergence and enhance the solution 
diversity, a part of the swarm is compelled to determine the 
less congested area. The pathfinder moths that perform this 
role are manipulated to evolve by the genetic operators, with 
size of ( 𝑛!  =  𝑓𝑙𝑜𝑜𝑟(𝑛/2)) selected from the worst-
performing individuals in the swarm. The crossover and 
mutation operators of GA are applied on all moths in the 
swarm to improve the pathfinder group. Therefore, after the 
sorting of the population, the first half of the individuals that 
have better luminescence intensity values are regarded as 
candidate parents (elite individuals). The size of the elite 
individuals can be simply calculated using 𝑛!  = 𝑛 − 𝑛!. 
 The probability distribution function (pdf) is used to 
select parents, which is increased as the fitness of the 
individual be greater. Therefore, two of moths from the elite 
individuals are randomly selected as parents for one 
pathfinder moth. In order to perform the possible mating, a 
single crossover point is identified on both parents' vectors 
at random. The elite individuals are then divided at this point 
to exchange their tails thereby give birth to the new child 
pathfinder (xp). This ensures that the best candidates (local 
optima) are copying into the next generation. After the 
reproduction operation, a mutation operator based on normal 
distribution is applied to these offspring in order to increase 
their diversity and increase the ability to jump out of 

suboptimal/local solutions. For exploitation purpose, an 
adaptive mutation rate (mrate) is proposed to decrease 
through all iterations T as follows: 
 

	  
mrate =0.05.(1− t

T )                              (14) 

 
 In order to achieve the completed trail solution, each 
pathfinder solution (host vector) updates its position through 
the crossover operations by incorporated the mutated 
variables of the sub-trail vector (low degree of dispersal) 
into the corresponding variables of host vector. The 
completed trail/mixed solution Vpj, may be described as: 
 

 

Vpj
t =

vpj
t if j ∈ cp

xpj
t if j ∉ cp

⎧

⎨
⎪⎪

⎩
⎪
⎪

                 (15) 

 
 The fitness value of the genetic pathfinder 
solution,  f x!!!!  are determined after finishing the last 
procedure. The structure of worst half of the old population 
is then redesigned by comparing the fitness of these 
offspring with that of their previous positions 𝑓 𝑥!! . The 
suitable solutions that have the highest luminescence 
intensity are chosen to retain for the next generation, which 
is used for minimization problems as follows: 
 

	   

xp
t+1
! "!!

=
xp

t
!"!

if f (xp
t+1
! "!!

) ≥ f (xp
t
!"!

)

vp
t
!"!

if f (xp
t+1
! "!!

) < f (xp
t
!"!

)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

        (16) 

 
 Finally in this phase, the light sources are elected from 
among the combined population (survivors of the previous 
equation and their parents) to continue as guidance of the 
next phases. Therefore, the moths are changed dynamically 
in the GMSA model where any pathfinder moth uplifts to 
become prospector or onlooker moth if it discovers a 
solution with luminescence more than the existing light 
sources. That means the new lighting sources will be 
presented at the end of this stage. The probability 𝑃!  of 
selecting the 𝑖th moth as a light source is proportional to the 
corresponding fitness, which can be calculated as follows:  

 

	  
pi =

f (xi )

f (xi )i=1

n
∑

∀i ∈ 1,2,...,n{ }                  (17) 

 
3.3.3 Transverse orientation 
Individuals that have been selected as elites or parents have 
another role at this stage as prospectors. The number of these 
moths 𝑛! is proposed to decrease with time progress as:  

	  
n f = round (n− np )× (1− t

T
)

⎛

⎝
⎜

⎞

⎠
⎟                    (18) 

 After the pathfinders have finished their search, the 
information about luminescence intensity is shared with 
prospectors, which attempt to update its positions in order to 
discover new light sources. Each prospector moth 𝑥!  is 
soared into the logarithmic spiral path as shown in Fig. 2(a) 
to make a deep search around the corresponding artificial 
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light source xi, which is chosen on the basis of the 
probability Pi using (18). The new position of 𝑗th prospector 
moth, can be expressed mathematically as follows: 
 

	  

x j
t+1 = x j

t − xi
t .eθ .cos2πθ + xi

t ∀ j ∈ 1,2,...,nf{ }
;∀i ∈ 1,2,...,n{ }

    (19) 

 
where,  𝜃 ∈ [𝑟, 1] is a random number to define the spiral 
shape and 𝑟 = −1 − 𝑡 𝑇. The GMSA is dealing with each 
variable the previous formula as an integrated unit. At the 
end of this stage, only moonlight is updated. It should be 
noted that all moths in the modified swarm cooperate to 
discover new sources of light, which increases the area of 
selection and prevents from falling into local solutions and 
thus increases the efficiency of the proposed algorithm. 

 
3.3.4 Celestial navigation 
The diminishing of the number of prospectors during the 
optimization process increases the onlookers number 
(n! =  𝑛! − n!). This may lead to an increase in the speed of 
the convergence rate of GMSA towards the global solution. 
The onlookers are the moths that have the lowest 
luminescent sources in the parent group. Their main aim for 
traveling directly to the moon, which is the most shining 
solution Fig. 2(b).  In the GMSA, the onlookers are forced to 
search for the hot spots of the prospectors effectively. These 
onlookers are divided into the two following parts: 
 The first part, with the size of  𝑛! = 𝑟𝑜𝑢𝑛𝑑 𝑛! 2 , 
walks according to Gaussian distributions. The new 
onlooker moth in this sub-group 𝑥!!!!  moves with series 
steps of Gaussian walks, which can be described as follows: 

 

	  

xi
t+1 = xi

t +ε1 + ε2 ×bestg
t −ε3 × xi

t⎡
⎣

⎤
⎦

∀i ∈ 1,2,...,nG{ }
          (20) 

 

	  
ε1 ~ random(size(d))⊕ N bestg

t , log t
t

× (xi
t −bestg

t )
⎛

⎝
⎜

⎞

⎠
⎟    (21) 

 
 Where, ε! is a random number generated from Gaussian 
distribution,  ε!  and ε!  are random samples drawn from a 
uniform distribution within the interval [0, 1]. best! is the 
global best solution (moonlight) obtained in the transverse 
orientation phase. Based on many optimization algorithms, 
there is a memory to transfer information from the current 
generation to the next generation. However, the moths may 
fall into the fire in the real world due to the lack of an 
evolutionary memory. This is due to the performance of 
moths is intensely affected by the short-term memory and 
the associative learning between the moths. Therefore, the 
second part of onlooker moths n! = n! − n!  will sweep 
toward the moon light using associative learning immediate 
memory (ALIM) to imitate the actual behavior of moths in 
nature. The instantaneous memory is initialized from the 
continuous uniform of Gaussian distribution on the range 
from x!!"# − x!! to x!!"# − x!!. The updating equation of this 
type can be completed in form: 
 

	  

xi
t+1 = xi

t +0.001.G xi
t − xi

min ,xi
max − xi

t⎡
⎣

⎤
⎦+ (1− g

G
).r1

.(bestp
t − xi

t )+2g / G.r2.(bestg
t − xi

t ) ∀i ∈ 1,2,...,nA{ }
    (22) 

where, r!and r! are random number within the interval [0, 1], 
2g/G is the social factor,  1 − g/G is the cognitive factor and 
best! is a light source selected from the modified swarm 
based on the probability 𝑝!. 
 
4. Implementation of GMSA 
 
The pseudo code of the proposed GMSA is presented in 
Table 1. In addition, Fig. 3 explains the step procedure of 
GMSA to solve the DG and capacitors allocation problems. 

 
Fig. 2. Orientation behaviour of moth swarm [30]. (a) Moth flying in a 
spiral path into the nearby light source. (b) Moth flying at a fixed angle 
relative to moonlight. 

 
Table 1 pseudo code the proposed GMSA 
Initialize the moth-swarm population. 
Calculate the swarm finesses  
Identify the type of each moth:  
The worst half of swarm is offsprings(genetic pathfinders) 
the rest are parents(prospectors and onlookers)  
----------------------------------------------------------------------- 
while t < Max number of iterations T  
for each offspring, 
Select two parents based on pdf 
Identify the crossover points at random 
Construct a new offspring  by appling GA-crossover on 
parent 
Mutate the new offspring with the proposed mutation rate 
Calculate the probability values 𝑃. 
Select the artificial light sources 
End of reconnaissance. 
----------------------------------------------------------------------- 
for each prospector moth(best group), 
Update the position of prospector moth. 
Calculate the fitness of prospector. 
End of Transverse orientation. 
Define the new moonlight. 
----------------------------------------------------------------------- 
for each onlooker moth, 
Update the position according to its type. 
if  ( 𝑖 ∈ 𝑛!), 
Generate Gaussian walk steps 𝜀!, 𝜀!, 𝑎𝑛𝑑 𝜀! 
Move the onlooker position with Gaussian walks 𝑥!!!! 
Else, 
Drift the onlooker moth using the associative learning 
operators and immediate memory. 
End if. 
Calculate the fitness of onlooker moth.  
End of Celestial navigation. 
----------------------------------------------------------------------- 
End while. 
Print global best solution (moonlight) 

 
 
 



Emad A. Mohamed, Al-Attar Ali Mohamed and Yasunori Mitani/Journal of Engineering Science and Technology Review 11 (1) (2018) 55-65 

 
 

59 

 
Fig. 3 Flowchart of GMSA 
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Update the moonlight  

Calculate the fitness of 
prospectors 

Print the optimal Solution  

Onlooker moves with Gaussian walks 
𝒙𝒊𝒕!𝟏 = 𝒙𝒊𝒕 + 𝜺𝟏 + !𝜺𝟐×𝒃𝒆𝒔𝒕𝒈𝒕 − 𝜺𝟑×𝒙𝒊𝒕! 

Onlooker moves with proposed ALIM 
𝐱𝐢𝐭!𝟏 = 𝐱𝐢𝐭 + 𝟎.𝟎𝟎𝟏 ∙ 𝐍!𝐱𝐢𝐦𝐢𝐧 − 𝐱𝐢𝐭, 𝐱𝐢𝐦𝐚𝐱 − 𝐱𝐢𝐭! + 
(𝟏 − 𝐠/𝐆) ∙ 𝐫𝟏 ∙ !𝐛𝐞𝐬𝐭𝐩𝐭 − 𝐱𝐢𝐭! + 𝟐𝐠/𝐆 ∙ 𝐫𝟐

∙ !𝐛𝐞𝐬𝐭𝐭 − 𝐱𝐭! 

Is 
𝐢 ∈ 𝐧𝑮 

Yes 

For each Onlooker moth No 

Calculate the fitness of onlookers 

Find the survivors among the new and old moths 

Convergence
? No 

Yes 

Generate initial population using 𝒙𝒊𝒋 = 𝒓𝒂𝒏𝒅[𝟎,𝟏] . !𝒙𝒋𝒎𝒂𝒙 − 𝒙𝒋𝒎𝒊𝒏! + 𝒙𝒋𝒎𝒊𝒏 

Identify the Swarm size (𝒏), and Max number of iterations 𝑻 

Sort the population according to their finesses 

Apply mutation with rate of 𝐦𝐫𝐚𝐭𝐞 = 𝟎.𝟎𝟓 ∙ (𝟏 − 𝐭/𝐓) on the 
offsprings 

Define the worst group as offspring 
 with size of 𝒏𝒑  =  𝒇𝒍𝒐𝒐𝒓(𝒏/𝟐)  

 

Apply crossover operator on parents to generate 
offsprings 

Select the light sources based on  𝑷𝒊 

Compare offsprings with their previous positions and survival of the fittest 

Evaluate the probability 𝑷𝒊 of each moth in the modified swarm (survivors and their 
parents) 

Update the prospectors using 𝒙𝒋𝒕!𝟏 = !𝒙𝒋𝒕 − 𝒙𝒊𝒕! ∙ 𝒆𝜽 ∙ 𝒄𝒐𝒔𝟐𝝅𝜽+ 𝒙𝒊𝒕 

Define elites as parent group 
with size of  𝒏𝒆  = 𝒏 − 𝒏𝒑 

 

For each elite 

Is 
𝐢 ∈ 𝐧𝒇 Yes 

𝒕
=
𝒕+

𝟏 
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5. Results and Discussion  
 
To evaluate the efficiency of the proposed GMSA method, 
MSA, GA, FPA and sine-cosine algorithm (SCA) against 
power loss minimization. The IEEE distribution systems of 
33 and 69-bus have been applied for this simulation.  The 
MATLAB 8.6 ® is used to implement the GMSA technique 
for the optimal DG and capacitor placement problem 
individually and simultaneously. The test cases taken into 
consideration are: 
 

Case 1: Optimal shunt capacitors locations and sizing 
Case 2: Optimal DG locations and sizing 
Case 3: Optimal locations and sizing of DG and shunt    

capacitors simultaneously 
 

 The DG unit is considered as negative P load with real 
power injection capability. The status of location and rating 
of DG unit and shunt capacitors are taken as the decision 
variables. The maximum penetration limit of DG unit is 
limited to 40% of the total system real power demand. 

 
5.1. IEEE 33-Bus Test System 
To evaluate the impact of the proposed hybrid GMSA on the 
medium network of the RDN, the IEEE 33-bus system has 
been tested. Fig. 4 shows the single line diagram of this 
system. The system rated voltage is 12.66 kV with 100 
MVA base. The load and line data are given in [17]. Load 
flow calculation is run before compensation, the minimum 
bus voltage is registered as 0.9036 p.u at node 18 and the 
total active power loss at nominal load is 210.98 kW. In the 
first case, optimal places results of shunt capacitors after 40 
independent runs using GMSA, MSA, GA, FPA and SCA 
under the same conditions are summarized in Table 2.  
 For this case, the GMSA and GA produce better 
solutions compared to the MSA and FPA methods, whereas 
the best power loss value obtained by SCA is much more 
than the rest of algorithms. Using the proposed GMSA 
method, the real power loss is diminished to 137.21kW as 

34.96% of the base case. It is considered the lowest value 
compared to the other methods.  
 In addition, the system voltage profile is improved and 
the worst bus voltage is enhanced to 0.9343 p.u as shown in 
Fig. 5(a). In terms of the convergence features, the GMSA 
and GA have a speedy and smooth rate of convergence more 
than the other algorithms, as shown in Fig. 5(b) for power 
losses. In case of using only DGs, the hybrid GMSA method 
still has the preference in reducing the power loss which is 
minimized to 67.97 kW comparing with GA and MSA for 
70.46kW and 71.34kW, respectively as seen in Table 3, 
whereas FPA and SCA indicated a severe changes along the 
search process, which leads to unstable final solution as 
shown in Fig. 6(b). Moreover, Fig. 6(a) confirms the 
effectivity of the proposed technique by showing the 
improvement in system voltages. Case 3 proved the 
effectiveness of the proposed hybrid method as it directed 
quickly towards its optimal value of power loss to 7.94kW 
with highest convergence speed compared to GA, MSA, 
FPA and SCA as tabulated in Table 4 and depicted in Fig. 
7(b). In addition, it is obvious from Fig. 7(a) that the best 
minimum bus voltage is enhanced to 0.9938 p.u with GMSA. 
It can be seen from Fig. 8 that the proposed hybrid algorithm 
provides a significant improvement of bus voltage profile 
with case-3 as compared with other cases. The results stated 
that the GMSA method performed better than the other 
algorithms over all cases of IEEE 33-bus system. 
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Fig. 4. Single line diagram of IEEE 33-bus RDN [17] 
 

 
Table 2. Case 1(Cap. only) Comparison results of different optimization techniques (33-bus system) 

Techniques Vmin (p.u) Vmax 
(p.u)* 

Optimal CAP location (bus no.) 
Optimal size (KVAR) Ploss (KW) % Loss 

reduction 
Base Case 0.9036 0.9971 - 210.98 - 

Proposed GMSA 0.9343 0.9979 2(150), 12(450), 18(900), 24(450),30(1050) 137.21 34.96 

GA 0.9329 0.9977 2(150), 3(750), 2(450), 13(350), 18(1200) 
30(1050) 138.1 .34 54 

MSA 0.9297 0.9975 2(150), 6(750), 8(750), 13(1050), 24(1050) 139.91 33.68 
FPA 0.9254 0.9975 8(300), 14(450), 19(750), 30(1050) 141.82 32.78 
SCA 0.9236 0.9974 8(750), 12(750), 13(1500), 24(600), 30(1050) 144.83 31.35 

SA [24] 0.9591 NA 10(450), 14(900), 30(350) 151.75 28.07 

FRCGA [31] NA NA 28(25), 6(475), 29(300), 8(175), 30(400), 
9(350) 141.24 33.05 

 
Table 3. Case 2 (DG only) Comparison results of different optimization techniques (33-bus system) 

Techniques Vmin (p.u) Vmax (p.u) Optimal DG location (bus no.)  Optimal size 
(Kw) Ploss (KW) % Loss 

reduction 
Base Case 0.9036 0.9971 - 210.98 - 

Proposed GMSA 0.9725 0.9988 29(445.4), 10(399.1), 15(439.4),  25(495.3), 
26(495.3), 32(461.8) 67.97 67.78 

GA 0.9648 0.9986 26(487.3)  29(426.4)  25(481.3)  12(487.3)  
32(487.3)  17(156.1) 70.46 66.6 

MSA 0.9587 0.9986 24(386.5), 25(495.3), 27(495.3),  33(495.3), 
15(495.3), 29(296) 71.34 66.19 



Emad A. Mohamed, Al-Attar Ali Mohamed and Yasunori Mitani/Journal of Engineering Science and Technology Review 11 (1) (2018) 55-65 

 
 

61 

FPA 0.9647 0.9985 33(495.3), 25(323.3), 13(470.8)  29(458.4),  
9(434.9), 7(233.5)                              73.01 65.39 

SCA 0.9561 0.9984 14(495.3), 31(495.3), 24(425.4),   8(484.6),  
4(390.9)                        77.92 63.07 

 
Table 4. Case 3 (CAP & DG) Comparison results of different optimization techniques (33-bus system) 

Techniques Vmin 
(p.u) 

Vmax 
(p.u) 

Optimal CAP location (bus no.)  
Optimal size (KVAR) 

Optimal DG location (bus no.)  
Optimal size (Kw) 

Ploss 
(KW) 

% Loss 
reduction 

Base Case 0.9036 0.9971 _ _ 210.98 _ 
Proposed 
GMSA 0.9938 1.001 30(600), 11(350), 31(450), 

14(150) 
24(418.2), 28(474.8), 32(478.6), 

11(448.7) 7.94 96.24 

GA 0.9862 0.9993 12(450), 33(750), 6(450) 8(493.7), 14(495.3), 25(495.3) 16.41 92.22 

MSA 0.9786 0.9989 30(1050), 16(450) 25(155.3), 11(455.4), 28(455.3), 
31(326.9) 24.87 88.21 

FPA 0.9829 0.9995 33(150), 10(150), 32(600), 
4(1050) 

24(93.7), 8(421.2), 23(226.6), 
28(495.3) 29.39 86.08 

SCA 0.9739 0.9985 2(150), 4(350), 25(350), 
30(1200) 

10(285.7), 17(176.4), 33(470.4), 
18(381.8) 40.55 80.78 

    
 

 
 

 
Fig. 5. Case 1 for 33-bus system (a) System Voltage Profile (b) Real 
power loss  

 

 
 

 
Fig. 6. Case 2 for 33-bus system (a) System Voltage Profile (b) Real 
power loss 
 

 

 
Fig. 7. Case 3 for 33-bus system (a) System Voltage Profile (b) Real 
power loss 
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Fig. 8. Voltage Profile for 33-bus system with GMSA 
 
5.2. IEEE 69-Bus Test System 
To investigate the effectiveness of the proposed GMSA on 
a large scale of RDN, it is applied on the IEEE 69-bus 
system, which consists of 69 buses and 68 branches as 
shown in Fig. 9. This system is operated with 100 MVA 
base, 12.66 kV rated voltage, and total system load is 
(1.896MW+j1.347MVAR). All data of lines and loads are 
given in [17]. The total real power loss for the base case 
without using capacitors or DGs is found at 224.975 kW 
with the lowest bus voltage at bus 65 is 0.9092 p.u. In case1, 
using the capacitors banks alone helps in reducing the 
system power loss by 35.98% from the base case using the 
GMSA with quickly convergence rate better than MSA, 
FPA and SCA, whereas the GA has the second best final 
solution after GMSA with more convergence rate as 
depicted in Fig. 10(b). Furthermore, the lowest bus voltage 
is increased from 0.9092 PU to 0.9331 p.u as seen in Fig. 
10(a) which indicates the difference between the system 
voltages profile before and after compensation with the 
capacitors banks using the same algorithms under the same 
conditions. All simulation results obtained with the 
proposed hybrid algorithm and other methods for cases 1–3 
are summarized in Table 5. In case2 of using DGs only, 
GMSA gave a good performance as it directed to its optimal 
power loss value very faster than other techniques as shown 
in Fig.11 (b). The power loss is decreased to 67.79 kW with 
increase the minimum bus voltage to 0.9819 p.u as depicted 
in Fig. 11(a). The GA and MSA came in the second best 
solutions for reducing the power loss to acceptable values. 
But, the FPA and SCA indicated severe variations along the 
optimization process, which leads to an unstable final 
solution. In order to evaluate the robustness of the proposed 
paradigm, a full comparison in terms of best, power loss 
and minimum voltage is given in Table 6.  
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Fig. 9. Single line diagram of IEEE 69-bus RDN [17] 

 
 GMSA investigated the best performance with case 3. It 
reduced the power loss to 5.093kW with 97.7% loss 
reduction compared to 16.72kW with GA, which is 
considered the second algorithm in reducing the power loss. 
In contrast, MSA, FPA and SCS still suffer from 
excessively slow convergence as shown in Fig. 12(b). 
Furthermore, the minimum bus voltage increased to a very 
good value (0.9976 p.u) during this case using the GMSA 
compared to other methods as depicted in Fig. 12(a). Table 
7 summarizes all simulation results of this case such as 
optimal capacitors/DGs locations, total active power loss, 
minimum voltage, maximum voltage and loss reduction. 
Also, it can be noted from Fig. 13 that the proposed hybrid 
GMSA provides a significant enhancement of voltage 
profile with case-3 as compared with cases 1 and 2. Results 
indicated that the proposed GMSA minimized the objective 
function, and provided remarkable results compared to 
other proposed algorithms and those reported in the 
literature. 

 

 

 
Fig. 10. Case 1 for 69-bus system (a) System Voltage Profile (b) Real 
power loss  
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Table 5. Case 1(Cap. only) Comparison results of different optimization techniques (69-bus system) 

Techniques Vmin (p.u) Vmax (p.u) Optimal location (bus no.)   
Optimal size (KVAR) 

Ploss 
(KW) 

% Loss 
reduction 

Base Case 0.9092 0.9999 - 224.98 - 
Proposed 
GMSA 0.9331 0.9999 2(750), 12(300), 50(450), 61(900), 64(350) 144.03 35.98 

GA  0.9312 0.9999 12(600), 28(150), 50(450), 63(350), 62(900) 146.69 34.79 

MSA 0.9305 1.000 37(150), 36(1050)  47(150)   8(150)   2(1050)  
26(150)  10(900)  61(1050) 147.98 34.23 

FPA 0.9321 1.000 62(1350), 2(2100), 20(1500), 45(1950), 69(450), 
54(750), 48(750), 6(150) 148.25 34.1 

SCA 0.9294 0.9999 50(1050), 2(750), 2(1950), 61(1500), 62(300), 
12(300), 10(600), 28(450) 146.98 34.66 

 
 

 
 

 
Fig. 11. Case 2 for 69-bus system (a) System Voltage Profile (b) Real 
power loss 

 

 
Fig. 12. Case 3 for 69-bus system (a) System Voltage Profile (b) Real 
power loss 

 
Table 6. Case 2 (DG only) Comparison results of different optimization techniques (69-bus system) 

Techniques Vmin 
(p.u) 

Vmax 
(p.u) 

Optimal location (bus no.)   
Optimal size (Kw) 

Ploss 
(KW) 

% Loss 
reduction 

Base Case 0.9092 0.9999 - 224.98 - 
Proposed 
GMSA 0.9819 0.9999 53(359.8), 67(282.2), 42(100.1), 62(281.07), 

60(307.04) 67.79 69.87 

GA  0.9736 0.9999 62(504.1), 68(350.2), 64(497.2), 57(300.2),  
61(503.6) 70.15 68.81 

MSA 0.9741 0.9999 69(424.6), 62(497.1), 64(506.7), 61(506.8), 
19(382.1)                         72.1 67.95 

FPA 0.9774 1.0000 63(506.8) , 42(388.3),  62(500.36),  58(285.5  ),  
15(42.04)  64(365.6) 72.32 

 
67.85 

 
SCA 0.9748 0.9999 62(446.8), 7(152.6), 2(140.9), 60(396.2), 64(506.8)                       78.86 64.95 

 
Table 7. Case 3 (CAP & DG) Comparison results of different optimization techniques (69-bus system) 

Techniques Vmin 
(p.u) 

Vmax 
(p.u) 

Optimal CAP location (bus 
no.)  Optimal size (KVAR) 

Optimal DG location (bus no.)   
Optimal size (Kw) 

Ploss 
(KW) 

% Loss 
reduction 

Base Case 0.9092 0.9999 _ _ 224.98 - 
Proposed 
GMSA 0.9976 1.000 50(450), 48(150), 61(450), 

23(1200), 10(150) 
69(346.5), 18(383.2), 62(446.4), 

58(360.7) 5.093 97.7 

GA  0.9943 0.9999 69(150), 2(1350), 24(450), 58(318.4), 22(398.4), 36(137.4), 16.72 92.57 
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19(150), 63(1350) 64(506.6), 60(449.8) 

MSA 0.9726 1.000 49(150), 2(150), 69(150), 
62(1200) 

46(34.2), 27(506.8), 58(486.1), 
19(506.8), 65(506.8) 43.61 80.62 

FPA 0.9657 1.000 31(150), 2(2100), 3(1200), 
39(1050), 62(750) 

68(253.8), 26(506.8), 43(310.9), 
57(20.5), 52(336.3) 26.59 88.18 

SCA 0.9752 1.000 2(150), 55(150), 59(1050),  
26(350), 32(150) 65(454.4),  17(253.4), 61(350.6) 50.12 77.72 

 
Fig. 13. Voltage Profile for 69-bus system with different cases with 
GMSA 
 
 
6. Conclusion 
 
In this article, the exploitation ability of the GMSA has been 
maintained by using the best moths in the swarm to perform 
that role in the phases of the transverse orientation and 
celestial navigation. The tradeoff between the global and 
local search has been regulated by introducing an adaptive 
mutation operation of GA on the pathfinders as the largest 
population group in the swarm. In addition, individuals have 
been cooperated to produce the light sources for guidance of 
the transverse orientation phase, which assists the 
exploration ability in such exploitation phase and enhance 
the solution diversity. The complexity of reconnaissance 
phase has been reduced.  

 GMSA approach and four heuristic search algorithms, 
GA, MSA, FPA and SCA have been successfully applied to 
the medium and large-scale electrical distribution systems 
networks (IEEE 33, 69-bus systems) to solve the problem of 
capacitors or/and distributed generation (DGs) placement 
and ratings for minimizing the total real power losses. The 
proposed GMSA can improve the voltage profile at each bus 
in these systems. GMSA method presented a desirable and 
superior performance with stable convergence against the 
other techniques. Whereas, the GA and MSA have the 
second best final solution after GMSA in all test cases. On 
the other hand, FPA and SCA techniques indicated severe 
changes along the search process, which leads to an unstable 
final solution. Results stated that the proposed GMSA 
minimized the objective function, and provided remarkable 
results compared to other proposed algorithms and those 
reported in the literature. Hence, the applications of the 
proposed GMSA method can be considered as the most 
recent optimization algorithms for the network 
reconfiguration and deal with the protection coordination 
system in presence of capacitors banks and distributed 
generation during grid faults are the future scope of this 
work. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  

 

 
______________________________ 

References 
 
1. A. Y. Abdelaziz, Ehab S. Ali & Sahar M. Abdelazim, “Flower 

Pollination Algorithm for Optimal Capacitor Placement and Sizing 
in Distribution Systems” Electrical Power Components and 
Systems. Issue 5, Volume 44, 2016, pp. 544-555. 

2. J.B.V. Subrahmanyam, Optimal capacitor placement in unbalanced 
radial distribution networks, J. Theor. Appl. Inform. Technol. 6 (1) 
(2009), pp. 106–115. 

3. T.S. Chung, Ge Shaoyun, A recursive LP-based approach for 
optimal capacitor allocation with cost-benefit consideration, 
Electric Power Syst. Res. (1997), pp. 129–136. 

4. A. A. El-Gaafary et al., "Grey wolf optimization for multi input 
multi output system", Univers. J. Commun. Network, vol. 3, no. 1, 
2015, pp. 1-6.  

5. A. A. Mohamed et al., "Multi-objective Modified Grey Wolf 
Optimizer for Optimal Power Flow", IEEE, 18th International 
Middle East Power Systems Conference (MEPCON), 2016, pp. 
982-990.  

6. A. A. Mohamed et al., “Energy management with capacitor 
placement for economics low carbon emissions using modified 
multi-objective grey wolf optimizer”, 3rd International Conference 
on Energy Systems and Technologies, 2015, pp.261-270.  

7. A. A. Mohamed et al., "Multi-objective states of matter search 
algorithm for TCSC-based smart controller design", Electr. Power 
Syst. Res., vol. 140, 2016, pp. 874-885.  

8. A. A. Mohamed, “Design static VAR compensator controller using 
artificial neural network optimized by modify Grey Wolf 
Optimization”, IEEE, International Conference on Neural Networks 
(IJCNN), 2015, pp. 1-7. 

9.  Almoataz Y. Abdelaziz, Ehab S. Ali, Sahar M. Abdelazim, “flower 
pollination algorithm for optimal capacitor placement and sizing in 
distribution systems”, Electrical Power Components Systems, 
Volume 44, Issue 5, 2016, pp. 544-555,. 

10. K. Prakash, M. Sydulu, “Particle swarm optimization based 
capacitor placement on radial distribution system”, Proceedings of 
IEEE Power Engineering Society General Meeting (2007), pp. 1–5. 

11. T. Kerdphol, Kiyotaka Fuji, Y. Mitani, M. Watanabe and Yaser 
Qudaih “Optimization of a battery energy storage system using 
particle swarm optimization for stand-alone microgrids” Electrical 
Power and Energy Systems 81, 2016, pp. 32–39. 

12. A. Elsheikh, Y. Helmy, Y. Abouelseoud, A. Elsherif, “Optimal 
capacitor placement and sizing in radial electric power systems”, 
Alexandria Eng J, 53 (4) (2014), pp. 809–816. 

13. Sydulu M, Reddy VVK, “Index and GA based optimal location and 
sizing of distribution system capacitors”, IEEE power engineering 
society general meeting 2007; 24th–28th June, pp. 1–4. 

14. Sneha Sultana, Provas Kumar Roy, “Optimal capacitor placement 
in radial distribution systems using teaching learning-based 
optimization”, Elsevier Int. J. Electr. Power Energy Syst., 54 (2014), 
pp. 387–398. 

15. R.V. Rao, V.K. Patel, “Optimization of mechanical draft counter 
flow wet-cooling tower using artificial bee colony algorithm”, 
Energy Convers Manage, 52 (7) (2011), pp. 2611–2622. 

16. Attia A. El-Fergany, Almoataz Y. Abdelaziz, “Cuckoo Search-
based Algorithm for Optimal Shunt Capacitors Allocations in 
Distribution Networks”, Electrical Power Components and Systems. 
Issue 16, Volume 41, 2016, pp. 1567-1581. 



Emad A. Mohamed, Al-Attar Ali Mohamed and Yasunori Mitani/Journal of Engineering Science and Technology Review 11 (1) (2018) 55-65 

 
 

65 

17. Y. Mohamed Shuaiba, M. Surya Kalavathib, C. Christober Asir 
Rajan, “Optimal capacitor placement in radial distribution system 
using Gravitational Search Algorithm”, International Journal of 
Electrical Power & Energy Systems, Volume 64, 2015, PP.  384–
397. 

18. Felipe G. Duque, Leonardo W. de Oliveira, Edimar J. de Oliveira, 
André L.M. Marcato, Ivo C. Silva Jr, “Allocation of capacitor 
banks in distribution systems through a modified monkey search 
optimization technique”, International Journal of Electrical Power 
& Energy Systems, Volume 73, 2015, PP. 420–432. 

19. D.B. Prakash, C. Lakshminarayana, “Optimal siting of capacitors in 
radial distribution network using Whale Optimization Algorithm”, 
Alexandria Eng J. (2016), 
http://dx.doi.org/10.1016/j.aej.2016.10.002. 

20. E.S. Alia, S.M. Abd Elazima, A.Y. Abdelaziz, “Improved Harmony 
Algorithm for optimal locations and sizing of capacitors in radial 
distribution systems”, International Journal of Electrical Power & 
Energy Systems 79 (2016), pp. 275-284. 

21. Emad A. Mohamed, Al-Attar A. Mohamed, T. Kerdphol, Y. Mitani, 
" Optimization of reactive compensation in distribution networks 
based on moth swarm intelligence for multi-load levels", 
International Review of Electrical Engineering, Vol 12, No 4, 2017. 

22.  M. Ramalinga Rajua, K.V.S. Ramachandra Murthy, K. Ravindran, 
“Direct search algorithm for capacitive compensation in radial 
distribution systems”, International Journal of Electrical Power & 
Energy Systems, Volume 42, Issue 1, 2012, PP. 24–30. 

23. S. Neelima, P.S. Subramanyam, “Optimal capacitor placement in 
distribution networks for loss reduction using differential evolution 
incorporating dimension reducing load flow for different load 
levels”, Energytech, 2012. 

24. H.D. Chiang, J.C. Wang, O. Cockings, H.D. Shin, “Optimal 
capacitor placements in distribution systems: part 1: a new 

formulation and the overall problem”, IEEE Trans. Power Deliv, 5 
(2) (1990), pp. 634–642. 

25. R. Srinivasan Rao, S.V.L. Narasimham, M. Ramalinga Raju, 
“Optimal capacitor placement in a radial distribution system using 
Plant Growth Simulation Algorithm”, International Journal of 
Electrical Power & Energy Systems, Volume 33, Issue 5, 2011, pp. 
1133–1139. 

26. Ching-Tzong Su, Guor-Rung Lii, Chih-Cheng Tsai, “Optimal 
capacitor allocation using fuzzy reasoning and genetic algorithms 
for distribution systems”, Mathematical and Computer Modelling, 
Volume 33, Issues 6–7, 2001, pp. 745-757. 

27. Mostafa Sedighizadeh, Marzieh Dakhem, Mohammad Sarvi, Hadi 
Hosseini Kordkheili, “Optimal reconfiguration and capacitor 
placement for power loss reduction of a distribution system using 
improved binary particle swarm optimization”, Int J Energy 
Environ Eng. (2014) 5: 73. Doi: 10.1007/s40095-014-0073-9. 

28. Ying-Tung Hsiao, Chia-Hong Chen, “Optimal capacitor placement 
in distribution systems using a combination fuzzy-GA method”, 
International Journal of Electrical Power & Energy Systems, 
Volume 26, Issue 7, 2004, pp. 501–508. 

29. J. A. Micheline Ruba and S. Ganesh “Power Flow Analysis for 
Radial Distribution Systems using Backward/Forward Sweep 
Method” Vol 8, No.10, 2014, pp. 1621 – 1625. 

30. Al-Attar Ali Mohamed, Yahia S. Mohamed, Ahmed A.M. El-
Gaafaryb, Ashraf M. Hemeida, “Optimal power flow using moth 
swarm algorithm”, Electric Power Systems Research, Volume 142, 
2017, pp. 190–206. 

31.  Ahmed R. Abul’Wafa, “Optimal capacitor placement for 
enhancing voltage stability in distribution systems using analytical 
algorithm and Fuzzy-Real Coded GA”, International Journal of 
Electrical Power & Energy Systems, Vol 55, 2014, pp. 246–252. 

 
 
Nomenclature 
Pk                 Real power flow from bus k 
Qk                   Reactive power flow from bus k 
PLk                                 Real power load connected at bus k  
QLk Reactive power load connected at bus k  
PL(k+

1)    
Real power load connected at bus k+1  

QL(k+

1)                         
Reactive power load connected at bus k+1  

Rk Resistance connected between buses k and k+1   
Xk                         Reactance connected between buses k and k+1   
Vk Voltage at bus k 
Vk+1                     Voltage at bus k+1 
Psys Network active power 
PDG Active power of DG 
Pd Active power demand 
Qfc Reactive power compensation 
Vmin                          Minimum bus voltage value 
Vmax    Maximum bus voltage value 
PT loss                            Tap setting of transformer 
np Number of pathfinders moths 
µt Variation coefficient 
𝜎!!  Dispersal degree 
𝑏𝑒𝑠𝑡! The global best solution 
ε1 Random samples drawn from Gaussian stochastic 

distribution 
ε2, ε3 Random numbers distributed uniformly within 

interval [0,1] 
r1, r2 Random number within the interval    [0, 1] 
Qsys Network reactive power 
QDG Reactive power of DG 
Qd Reactive power demand 
 


