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Abstract 
 
Our aim is to solve a problem of optimal control with free final time using the Pontryagin’s maximum principle. As an 
illustration, we consider a navigation problem which is solved analytically and numerically by the shooting method in the 
case without constraint. The two approaches are compared. In the second case, we solve numerically the same problem 
with constraint on the state. At the end, we prove the convergence of the method for the second case.  
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1. Introduction 
 
Indirect methods based on the principle of maximum 
Pontryaguin [1, 2, 4] are known for their speed and precision 
in the treatment of optimal control problems. In the present 
study, we consider an optimal control problem with free 
final time. In order to illustrate this study, we consider a 
problem of aircraft flying from an initial state to a final state. 
We are particularly interested in minimizing the duration 
landing pass from an initial position to a final one. For this, 
we will use the principle of Pontryaguin [4, 15, 16, 17], and 
determine the optimality equations resulting from this 
principle; i.e.; a differential-algebraic system as the state 
equation is provided (with an initial condition and a final 
condition) and the adjoint equation. On other hand, note that 
in the adjoint equation, derived from the principle’s 
Pontryaguin, no information is given concerning the initial 
or the final conditions; consequently this costate equation is 
hard to use algorithmically[12, 13, 14, 17]. Thus, in order to 
determine the initial condition of the adjoint state, we use the 
shooting indirect method for the numerical procedure [4]. 
Note also, that we consider in the presented study two 
distinct cases corresponding to the cases where constraints 
are submitted or not submitted to the state. Finally, we 
present the results of numerical experiments implemented 
using Matlab facilities.  
 
 
2. Statement of problem 
 
The optimal control problem considered is to find the control 
	 u(t)  that minimizes the performance index 

	 
J =ϕ(t f ,x f )+

t0

t f

∫ L(t ,x ,u)dt ,     (1) 

 
subject to the differential constraints  
 
	  !x = f (t ,x ,u);       (2) 
 
the prescribed initial condition at the initial time 	 t0   
 

	 x(t0)= x0 ,                 (3) 
 
and prescribed final conditions at the final time 

 
t f   

 

	 ψ(x f ,t f )=0,              (4) 

 
here, ψ  is a 	 (l +1)×1−  vector, where 	 0≤ l ≤ n;  there 
must be at least one final condition that draws the optimal 
path to the final value. 
 In order to use the Pontryaguin principle’s, the 
Hamiltonian  H  is defined by:  
 

	 H = L(t ,x ,u)+ pT f (t ,x ,u).       (5) 
 
 The Euler-Lagrange equations are given by:  
 
	  !x = f (t ,x ,u),                  (6) 
  

	  !p = −Hx
T (t ,x ,u, p),            (7) 

  

	 0= Hu
T (t ,x ,u, p),              (8) 
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and the previous prescribed boundary conditions  
 

	 x(t0)= x0 ,                   (9) 
  

	 ψ(t f ,x f )=0.              (10) 

 
 We will find 	 u*  which minimizes  H  such that 	 u*  
verify the following inequality  
 

	 H(t ,x ,u
* , p)−H(t ,x ,u, p)≤0,	∀	u      (11) 

  
2.1. Transversality condition on  p  
Generally, when the terminal cost is considered in the cost 
functional, the functional to be minimized can be written as 
follows :  

	 
J =ϕ(t f ,x f )+

t0

t f

∫ L(t ,x ,u)dt ,         (12) 

 Let 	 M0  and 	 M1  be two subsets of 		 R
n ;  then to 

minimize the cost functional one should find a trajectory 
between 	 M0  and 	 M1 . Moreover if 	 M0  and 	 M1  are 

two varieties of 	 Rn  having the tangent spaces 
	 
Tx0

M0  and 

	 
Tx(t f )

M1  respectively 	 x0 ∈ M0  and 
	 
xt f

∈ M1 ,  then the 

vector 	 p(t)  must verify the transversality conditions:  
 

	 
p(0)⊥ Tx0

M0 ,      (13) 

  

	 
p(t f )− p0∇xϕ(t f ,x f )⊥ Tx f

M1 ,    (14) 

 
where 	 p

0  is a real such that 	 p
0 <0  leads to the 

Pontryaguin’s maximum principle and 	 p
0 >0  leads to the 

Pontryaguin’s minimum principle [4]. If 	 M0 = x0 ,  the 

condition 	(13)  becomes empty and the variety 	 M1  can 
be written as follows:  
 

		 M1 = {x ∈ Rn / F1(x)= F2(x)= ... = Fq(x)=0},  
 
where  Fi  are functions of class 	 C1  on 		 R

n ;  then the 

tangent space to 	 M1  at a point 	 x ∈ M1  is defined by:  
 

		 Tx M1 = {ν ∈ Rn /∇Fi(x)ν =0,	i =1,...,q},  
 
and the condition 	(14)  is written as follows:  

 

		 
∃ν1 ,....νq ∈ R / p(t f )=

i=1

q

∑ν i∇x Fi(x(t f ))+ p0∇xϕ(t f ,x f ),  

 
where  ν i  are the Lagrange multipliers. 
 The transversality condition of Hamiltonian is defined 

by:  
 

	 H(t f ,x f , p(t f ), p0 ,u(t f ))=0.  
 
corresponding to the fact that the Hamiltonian vanishes at 
final time.  
 
 
3. Shooting Indirect method 
 
The shooting indirect method is used to obtain the value of 
	 p(0)  necessary to the solution of the problem characterized 
by the Pontryaguin principle. If it is possible, from the 
condition of minimization of the Hamiltonian to express the 
control extremal function of 	 (x(t), p(t))  then the extremal 
system is a differential system of the form 	  !z(t)=G(t , z(t))  
where 	 z(t)= (x(t), p(t)) . With a numerical integrator from 

	 z0  we obtain : 	   !zi
z0 : z(ti ) , where the  ti  	  i =1,2,…  are the 

time moments discretized by the integrator. But in 

	 z0 = (x0 , p0),  the value 	 x0  is given by the initial 

condition. Then, by doing some variations on 	 p0 , we obtain 

the different 	  !zi
z0  . Which interests us are the 	   !zN

z0 : z(t f )  

(at final time); else 	  !zN
z0 = ( !xN

z0 , !pN
z0 )  and only the 	  !xN

z0  are 

significant. Since they depend only on 	 p0 , note that 	  !xN
p0 . 

Let  G  be the implicit function giving 	 p0  by numerical 

calculation using an integrator returns 	  !xN
p0 − x f  : 

 

		 G :Rn →Rn  and  
 

	  G( p0)= !xN
p0 − x f .  

 
 Here  G  is an implicit nonlinear system of  n  
equations and  n  unknowns: 
 

	 G( p0)=0.   
 
 For the solution, we used the Newton’s method. The 
principle of the Newton’s method is described as follows: in 
the  k − th  step, let 	 p0

k  be an approximation of the zero 

	 p0  of  G ; therefore 	 p0  can be written 	 p0 = p0
k +Δp0

k , 
and then: 
 

	 0=G( p0)=G( p0
k +Δp0

k ),  
     

	 
=G( p0

k )+ ∂G
∂p0

( p0
k ).( p0 − p0

k )+o( p0 − p0
k ),  

 
 which leads to the solution of  
 

	 
∂G
∂p0

( p0
k ).( p0 − p0

k )= −G( p0
k ),  
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where 
	 
∂G
∂p0

( p0
k )  is the Jacobian matrix of the application 

	 p0→G( p0)  computed when 	 p0 = p0
k ; note that the 

mapping 	 p0→G( p0)  is not explicitly known but is 
known numerically. So we will use a method of numerical 
derivation based on the finite difference. To avoid the 

calculation of 
	 
∂G
∂p0

( p0
k ) , it suffices to find an 

approximation of 
	 
∂G
∂p0

( p0
k ) ; according to [3] , we will use 

one of the following finite difference approximations. 
 

	 

∂Gi
∂p0 j

( p0
k )≈ 1

hij
[Gi( p0 +

k=1

j

∑hikek )  

	 
−Gi( p0 +

k=1

j−1

∑hikek )],  

 
or else 

 

	 

∂Gi
∂p0 j

( p0
k )≈ 1

hij
[Gi( p0 + hije

j )−Gi( p0)],  

 
where the 

 
hij  are the given discretization step of the  i− th  

equation with respect to the  j − th  variable, and  ek  are 
the  k − th  vector of the canonical basis; note that, 
classically, we can always choose the values of 

 
hij  equal 

each other at a common value  h . Let 	 Δij( p0 ,h)  be a finite 

difference approximation, then we have: 

	  h→0
limΔij( p0 ,h)=

∂Gi
∂p0 j

( p0),i, j =1,...,n.  

 
Let, 
 

	 J( p0 ,h)= (Δij( p0 ,h)),  
 
 which is an approximation of the Jacobian matrix; then 
the approximate Newton’s method can be written as follows 
: 

	 p0
k+1 = p0

k − J( p0
k ,hk )−1.G( p0

k ).  
 
 The problem of convergence of this iterative process is 
ensured by using a result of the book of Ortega and 
Rheinboldt 	[6] ; indeed if the discretization step 

 
hij  are 

small and tend to zero, the convergence is ensured.  
 
 
4. Navigation problem 

  
4.1. Case without constraint on the state 
Consider the problem of flying an aircraft with a constant 
speed crosswind from one point to another in minimum 

time. Figure 	(1) , describes the simplified form of 
Zermelo’s problem [1]. Note that 

 
t f  is free, as it must be 

to have a minimum time problem.  
  

 
Fig. 1. Navigation problem 

  
 
 The optimal control problem is stated as follows: Find 
the control 	 θ(t)  that minimizes the final time  
 

	  J = t f →min,      (15) 

 
subject to the differential constraints  
 

	  !x1 =Vcosθ      (16) 
  

	  !x2 =Vsinθ +w,      (17) 
 
Where,  
 • 	 x1  et 	 x2  are the Cartesian coordinates,  
 •  V  is the constant speed of the aircraft relative to the 
air,  
 • θ  is the controllable orientation of aircraft velocity 
vector relative to the ground,  
 •  w  is the speed of the air relative to the ground.  
 
 The prescribed boundary conditions:  
 

	 t0 =0,	x10 =0,	x20 =0,     (18) 
 

	 x1 f =1,	x2 f =0.  
 
 The functional 	(15)  is equivalent to:  
 

	 0

t f

∫ dt → min.      (19) 

 
 The Hamiltonian is given by:  
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	 H = p1(Vcosθ )+ p2(Vsinθ +w)−1.    (20) 
 
 The Euler-Lagrange equations leads to:  
 

	  !x1 = H p1 =Vcosθ ,      (21) 

  

	  !x2 = H p2 =Vsinθ +w,     (22) 

 

	  !p1 = −Hx1 =0,      (23) 
  

	  !p2 = −Hx2 =0,      (24) 
  

	 0= Hθ = −p1Vsinθ + p2Vcosθ ,    (25) 
 
 From 	(58)−(59) , it follows that:  
 

	 p1 = constante,	p2 = constante.    (26) 
 
 Then, the equation for θ  gives:  
 

	 −p1sinθ + p2cosθ =0.     (27) 
 
 Which, since 	 p1  and 	 p2  are constant, implies that 

 tgθ  is constant and then θ  is also constant. 
 From the equation 	(54) , we deduce that: 
 

	 x1 = (Vcosθ )	t ,      (28) 
 
 From the equation 	(55) , we obtain: 
 

	 x2 = (Vsinθ +w)t.      (29) 
 
 Using the prescribed final conditions 	 x1 f =1  and 

	 x2 f =0 , leads to:  

	 
t f =

1
Vcosθ

,	sinθ = − w
V
.         (30) 

 
 Then, from Figure 	(2) , we obtain:  

 

	 
cosθ = V 2 −w2

V
,              (31) 

 
 Hence, the optimal control and the final time can be 
written as:  
 

	 
θ = −arcsin(w/V ),	t f =

1
V 2 −w2

.       (32) 

 
Fig. 2. Control Triangle 

 The boundary conditions for this problem are given by:  
 

	 H f = −1,	p1 f =ν1 ,	p2 f =ν2;            (33) 

 
 The value 	 p1  (	ν1 ) is given by:  
 

	 
p1 = −

1
V 2 −w2

.                 (34) 

 
 From the equation 	(27) , we obtain:  

 

	 
p2 =

w
V 2 −w2

.                   (35) 

 
 Finally, we obtain the following results:  

 

	 θ = −arcsin(w/V ),	t0 =0,	t f =(V 2 −w2)−1/2  

 

	 x1 = V 2 −w2t ,	x10 =0,	x1 f =1  

 

	 x2 = (Vsinθ +w)t ,	x20 =0,	x2 f =0  

 

	 p1 = −(V
2 −w2)−1/2 = p10 = p1 f    (36) 

 

	 p2 = w/(V 2 −w2)= p20 = p2 f .  
 
 Note that the aircraft is pointing upwind but it is moving 
directly toward the final point. An interesting check of the 
results can be made for the case where 	 w<<V . Here, 

	 θ ≅0,	x1 ≅Vt , and 	 x2 ≅0,  which seem reasonable. 
 To test the minimality of the solution, application of the 
Weierstrass condition leads to  
 

	 

p1Vcosθ* + p2(Vsinθ* +w)−
−p1Vcosθ − p2(Vsinθ +w)>0.    (37) 

 
 Since 	 V ≠0,  and cancelation of the term 	 p2w  gives:  
 

	 p1cosθ* − p2sinθ* − p1cosθ − p2sinθ >0   (38) 
 
 Then, the optimality condition 	(27)  becomes:  
 

	 p2 = p1tanθ      (39) 
 
 The application of the Legendre-Clebsch condition to 
this problem starts with : 
 

 	 Hθθ = −p1Vcosθ − p2Vsinθ .    (40) 
  
 If the values for 	 p1 ,  	 p2,  and θ  from the equation 

	(32)  are substituted into the expression of  Hθθ , we 
obtain:  
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Hθθ =

V 2

V 2 −w2
>0.     (41) 

 
 Since 	 w<<V ,  Hθθ  are positive. 
 
Numerical application  
For 	  V =300km / h,w= 40km / h , then  
 

	 θ = −0.1337radians,	t0 =0,	t f =0.2040mn  

 

	 x1 =297.3214t ,	x10 =0,	x1 f =1  

 

	 x2 = −164.7839t ,	x20 =0,	x2 f =0  

 

	 p1 = −0.0034 = p10 = p1 f     (42) 

 

	 p2 = 4.5249e−004 = p20 = p2 f .  
 
 For different values of  V  and  w , the analytical 
solution allows to obtain the following results: 

 
Table 1. Analytical solution 

   
 
5. Numerical solution 
 
For the numerical solution, we used the shooting indirect 
method. Then we have to solve the following system :   

		  

!z1 =Vcosθ ,
!z2 =Vsinθ +w,
!z3 =0,
!z4 =0,

θ = arctang
z4
z3

z1(0)∈ R , z2(0)∈ R ,
z3(0)∈ R , z4(0)∈ R.

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

 
 Let 	 z(t)  be the solution of the previous system at time 
 t  with the initial conditions  

	 z(0)= (z1(0), z2(0), z3(0), z4(0)).   
Let 	 z(0)= (x(0), p(0)).  
 We construct a shooting function which is a nonlinear 
algebraic equation of the variable  p  at time 	 t =0 . This 

shooting function is computed by a numerical procedure of 
integration of ordinary differential equation (using for 
example Euler method, Runge-Kutta method,. . . ); the 
shooting function is defined by:   

 

	 
G(z(0))=

z1(t f ,0,0, p1 , p2)−1
z2(t f ,0,0, p1 , p2)

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
.  

 
 The problem to solve is then written: Find 	 p(0)  such 
that 	 G(z(0))  gives the desired value of 	 x(t f ) . The 

algorithm for numerical solution of this problem will then be 
completely defined if one gives oneself:  
  

1.  the integration algorithm of a differential system with 
initial condition (e.g., Euler or Runge-Kutta procedure) 
to compute the shooting function  G  (implemented in 
’ode45’ of Matlab which is a method of Runge-Kutta 
4/5 with variable pitch).  

2.  the solution algorithm 	 G(z)=0  which in our case 
uses the method quasi- newton (implemented in 
’fsolve’ of Matlab).  

 
 For different values of the  V  and  w , we obtain the 
following figures that shows the state and the control. 

  

 
Fig. 3. State and control for a speed of aircraft V=300 and of wind 
w=40 

 
Fig. 4. State and control for a speed of aircraft V=400 and of wind 
w=60  
  

  
Fig. 5. State and control for a speed of aircraft V=600 and of wind 
w=100 

V (Km/h) w (Km/h) tf (mn) θ (radians) 
300 40 0.2040 -0.1337 
350 50 0.1740 -0.1433 
400 60 0.1517 -0.1506 
450 70 0.1350 -0.1562 
500 80 0.1216 -0.1607 
600 100 0.1014 -0.1674 
700 120 0.0870 -0.1723 
800 140 0.0762 -0.1759 
900 170 0.0679 -0.1900 
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Fig. 6. State and control for a speed of aircraft V=900 and of wind 
w=170 
 
 The results are in the Table 2:  
 
Table 2:Numerical solution  

 V
(km/h)   

  w
.(km/h)  

  θ .  
Itérations 

Time 
(seconds) 

300  40   0.1860   -0.1980   6  0.19 

350  50   0.1680   -0.1433   6  0.20 
400  60   0.1500   -0.1506   6 0.22 
450  70   0.1320  -0.1562   6  0.20 
500  80   0.1140   -0.1607  6  0.21 
600  100   0.0960   -0.1674   6 0.21  
700 120 0.0840 -0.1723 6 0.21 
800 140 0.0763 -0.1759 6 0.21 
900 170 0.0660 -0.1900 6 0.20 

 
 We deduce that the exact solution and the numerical 
solution are similar (see Tables 1 and 2). The performance of 
the numerical procedure are summarized in Table 2, for 
different values of  V  and  w . Note that the convergence is 
fast, moreover, the computation time is very low for a 
number of iterations not large enough. Note that when the 
speed of the wind increases, then, the time of landing 
decreases. In addition, it should be noted that wind is an 
important factor that reduces the duration of landing. In fact, 
during the flight, the aircraft must navigate in an air lane.  
 
5.1. Case with constraints on the state 
In this section, we consider a more complex situation. Then, 
a more realistic modelisation of the navigation of the aircraft 
will be better described by considering (15)-(56) in which 

	 xi ≤ xi(t)≤ xi ,	i =1,2,	   xi  and  xi  being the extremal 

values of the state variables 	 xi ,	i =1,2.  In such a case, the 
analytical procedure can not be applied, but the numerical 
procedure is well adapted. From a practical point of view, 
during the numerical procedure, we have to project the 
values of 	 xi ,	i =1,2,  on the convex set describing the 
constraints in the state variables.  

 

	 
J =ϕ(t f ,x f )+

t0

t f

∫ L(t ,x ,u)dt ,    (43) 

 
subject to the differential constraints  
 
	  !x = f (t ,x ,u);      (44) 
 
the prescribed initial condition at the initial time 	 t0   

	 x(t0)= x0 ,                  (45) 
 
and prescribed final conditions at the final time 

 
t f   

 

	 ψ(x f ,t f )=0,               (46) 

 
here, ψ  is a 	 (l +1)×1−  vector, where 	 0≤ l ≤ n;  there 
must be at least one final condition that draws the optimal 
path to the final value. 
 We consider a constraint of the state 	 g(t ,x ,u)≥0  To 
state the maximum principle, we define the Hamiltonian 
function as:  
 

	 H = L(t ,x ,u)+ pT f (t ,x ,u).       (47) 
 
we also define the Lagrangian function as  
 
	  L(t ,x ,u, p,µ)= H(t ,x , p,u, p)+µg(t ,x ,u)             (48) 
 
where  µ ∈ R  is a row vector, whose components are called 
Lagrange multipliers. These Lagrange multipliers satisfy the 
following condition:  
 
	 µ ≥0,< µ ,g(t ,x ,u)>=0        (49) 
 
 The adjoint vector satisfies the differential equation:  
 

	  !p = −Lx
T (t ,x ,u, p),               (50) 

 
 with boundary conditions  
 

	 
p(t f )=ϕ(t f ,x f )+αψx f

(t f ,x f )
   

(51) 

 
where 

	 
α ≥0,	<α ,ψx f

(t f ,x f )>=0  with α  is constant 

vector. 
 The maximum principles states that the necessary 
condition for 	 u* , with corresponding state trajectory 	 x

* ,  
to be an optimal control are there should exist continuous 
and piecewise continuously differentiable function 	 p,  
piecewise continuous function 	µ ,  and constant α  such 
that the following conditions are verified:  
 

	  !x
* = f (t ,x* ,u* ),	x*(0)= x0 ,  

 
 satisfying the terminal constraint 

 

	 ψ(t f ,x f )=0  

 

	  !p = −Lx
T (t ,x ,u, p)  

 
with the transversality condition  
 

	 
p(t f )=∇xϕ(t f ,x f )+αψx f

(t f ,x f )  
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α ≥0,	<α ,ψx f

(t f ,x f )>=0  

 
the Hamiltonian maximizing condition  

  

	 H(t ,x
*(t),u*(t), p(t))≥ H(t ,x*(t),u*(t), p(t))   (52) 

	 at each	t ∈ [0,t f ]  

 
for all  u  satisfying 	 g(t ,x ,u)≥0 and the Lagrange 
multipliers 	 µ(t)  are such that 

 

	 
∂L
∂u
|
u=u*

= (∂H
∂u

+µ
∂g
∂u
)|

u=u*
= 0  

 
and the complementary condition 

 

	 µ(t)≥0,	< µ(t),g(t ,x
* ,u* )>=0	hold  

 
 The transversality condition of Hamiltonian is defined 
by:  
 

	 H(t f ,x f , p(t f ), p0 ,u(t f ))+ϕ(t f ,x f )=0.  
 
5.2. Sufficiency condition 
Definitions   
• A function 	 f :D→ E  is concave, if for all 	 x1 ,	x2 ∈ D  
and for all 	λ ∈ [0,1],   
 

	 f (λx1 +(1−λ)x2)≥ λ f (x1)+(1−λ) f (x2),  
this definition is equivalent to:  
	 If 		 ʹ́f (x)≥0		on		D ,	then f 		is concave on		D.  
 
• The function  f  is quasiconcave if  
 

	 f (x1)≤ f (x2)⇒ f (λx1 +(1−λ)x2)≥ f (x1)  
 
Theorem 5.1 [5] Let 	 (t ,x

* ,u* , p,µ ,α)  satisfy the necessary 
conditions in (52) . If 	 H(t ,x(t),u(t), p(t))  is concave in 

	 (x ,u)  at each 	 t ∈ [0,t f ] , ϕ  is concave in 	 x ,   g  

quasiconcave in 	 (x ,u),  ψ  is concave in 	 x ,  then 

	 (x
* ,u* )  is optimal. 

  
5.3. Application 

	 0

t f

∫ dt → min.          (53) 

 
subject to the differential constraints  
 

	  !x1 =Vcosθ      (54) 
  

	  !x2 =Vsinθ +w,      (55) 
 
 The prescribed boundary conditions:  
 

	 t0 =0,	x10 =0,	x20 =0,     (56) 

 

	 x1 f =1,	x2 f =0.  
 
 The constraint of the state are: 	 xi ≤ xi(t)≤ xi ,	i =1,2  

with 	 xi =0,  	 xi =2.  
 This constraint is equivalent to: 

 

	 x1(t)−0≥0,  
 

	 x2(t)−0≥0,  
 

	 −x1(t)+2≥0,  
 

	 −x2(t)+2≥0.  
 
 The Hamiltonian is given by:  
 

	 H = p1(Vcosθ )+ p2(Vsinθ +w)−1.    (57) 
 
 The Lagrangian is given by:  

 

	 L = p1(Vcosθ )+ p2(Vsinθ +w)−1+µ11(x1(t)−0)  
 

	 +µ12(x2(t)−0)+µ21(−x1(t)+2)+µ22(−x2(t)+2)  
  
where 	µ11 ,	µ12,	µ21 ,	µ22  are Lagrange mutlipliers. 

 

	  !p1 = −Hx1 =0,      (58) 
  

	  !p2 = −Hx2 =0,      (59) 
  

	 0= Lθ = −p1Vsinθ + p2Vcosθ ,    (60) 
 
 We show in the following proof that the solution 	 (x ,θ )  
is an optimal control 
 
Proof We have:  
 

	 
Hθθ =

V 2

V 2 −w2
>0.     (61) 

 
Then,  H  is concave in 	 (x ,θ ).  
 
 g  is quasiconcave:  
 

	 xi(t)−0≥0,		i =1,2  

	 λxi1(t)+(1−λ)xi2(t)−0≥ λxi1(t) 	 +(1−λ)xi1(t)= xi1(t)  

	 −xi(t)+2≥0,		i =1,2  

	 −λxi1(t)−(1−λ)xi2(t)+2≥ −λxi1(t)  

	 −(1−λ)xi1(t)+2= xi1(t)+2  
 
ψ  is quasiconcave: 
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	 x1 f −1=0  

 

	 λx1 f 1(t)+(1−λ)x1 f 2(t)−1≥ λx1 f 1(t)  

 

	 +(1−λ)x1 f 1(t)−1= x1 f 1(t)−1  

 

	 x2 f −0=0  
 

	 λx2 f 1(t)+(1−λ)x2 f 2(t)−0≥ λx2 f 1(t)  

 

	 +(1−λ)x2 f 1(t)−0= x2 f 1(t)  

 
then ψ  is quasiconcave. 

 Consequently, 	 (x
* ,θ * )  is optimal. 

 In the constrained case, the numerical experiments (

	 xi =0,	xi =2 ), are summarized below:  
  

 
Fig. 7. State and control for a speed of aircraft V=300 and of wind 
w=40 

   

 
Fig. 8. State and control for a speed of aircraft V=400 and of wind 
w=60 

 
Fig 9. State and control for a speed of aircraft V=600 and of wind 
w=100 
 

Fig. 10. State and control for a speed of aircraft V=900 and of wind 
w=170 
  
Table 3. Numerical solution  

 V
.(km/h)  

  w
.km/h)  

  θ .  Iterations  Time 
(seconds) 

300  40   0.1980   -0.1980   6  0.15 
350  50   0.1680   -0.1433   6  0.12 
400  60   0.1440   -0.1506   6 0.14 
450  70   0.1260  -0.1562   6  0.15 
500  80   0.1140   -0.1607  6  0.14 
600  100   0.0960   -0.1674   6 0.15  
700 120 0.0840 -0.1723 6 0.15 
800 140 0.0763 -0.1759 6 0.15 
900 170 0.0660 -0.1900 6 0.15 

 
 Analogously will the case without constraints, we can 
note that:   
 
 • the fast convergence,  
 • and a very short time of computation.  
  
 Then, the numerical procedure is well, adapted to an 
air-line regulation of aircraft flight.  
 
	
6. Conclusion 
 
In this paper, we have solved a problem of optimal control in 
free final time using Pontryaguin’s maximum principle, and 
for the numerical solution, we used the shooting indirect 
method to find the transversality conditions in both cases 
where the state is submitted or not to constraints. We applied 
this procedure to a navigation problem, where the solution 
are computed by a numerical way and by an analytical 
method in the unconstrained case. In this last case, the 
comparison between the results obtained by the analytical 
and the numerical methods shows that the solution are 
similar. We concluded that, in the numerical procedure, the 
convergence is fast and the computational time are small for 
both cases where the state is subject or not to constraint. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  
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