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Abstract 
 

Delamination fracture in three dimensional functionally graded multilayered beams loaded by bending moments and 
axial forces was analyzed. The beams can have an arbitrary number of layers of different thicknesses and material 
properties. In each layer, the material is functionally graded in the width, thickness and length directions. A delamination 
crack is located arbitrary along the height of the beam cross-section. Linear-elastic behaviour of the material was 
assumed. The bending moments and axial forces in the beam cross-sections ahead and behind the crack front were used 
to obtain a closed form analytical solution for the strain energy release rate which was applied to investigate the fracture 
in the functionally graded multilayered End Loaded Split (ELS) beam configuration. The strain energy release rate in the 
ELS was analyzed also by considering the beam strain energy for verification. Parametric studies were carried-out to 
evaluate the effect of material gradient and crack location on the fracture 
 
Keywords:  Functionally graded multilayered structure, Fracture, Linear-elastic material 
____________________________________________________________________________________________ 

 
1. Introduction 
 
Functionally graded materials have been used extensively in 
various engineering applications in aeronautics, 
microelectronics, thermal protective systems, optics and 
biomechanics for the last thirty years [1], [2], [3], [4], [5], 
[6]. Functionally graded materials are novel composites 
whose composition changes continuously within the solid. In 
this way, concentrations of stresses between different 
constituent materials are avoided in contrast to layered 
composites [7], [8], [9]. By variation of their properties with 
specific gradients along spatial coordinates, functionally 
graded materials can be designed to satisfy different 
requirements in different parts of a member. The 
functionality and reliability of structural members and 
components made of these novel materials are strongly 
influenced by their fracture behaviour. Therefore, various 
fracture analyses of functionally graded materials and 
structures have been performed by many researchers around 
the world [10], [11], [12], [13], [14], [15]. Although 
significant efforts have been devoted to study fracture of 
these materials, still there are problems which have not been 
analyzed sufficiently. One of these problems is the 
delamination in three-dimensional functionally graded 
multilayered structural members and components.  
 Therefore, the main goal of this paper was to analyze the 
delamination fracture in three-dimensional functionally 
graded multilayered beams loaded by bending moments and 
axial forces. The fracture was analyzed in terms of the strain 
energy release rate assuming linear-elastic behaviour of the 
material. The common solution derived was used to obtain 

the strain energy release rate in the functionally graded 
multilayered ELS beam. The dependences of strain energy 
release rate on the material gradient and crack location were 
evaluated.     
 
2. Determination of the strain energy release rate 
 
Linear-elastic functionally graded multilayered beam 
configurations with a delamination crack located arbitrarily 
between were studied. The beams are loaded by bending 
moments and axial forces. A perfect adhesion between 
layers was assumed. A beam portion with the delamination 
crack front is shown schematically in Fig. 1. The beam 
width at the delamination level is  bS . The beam height is 2h. 

The lower and upper crack arm thicknesses are   h1  and   h2 , 
respectively. The beam cross-section is symmetric with 
respect to the z-axis. The beam is built up by n horizontal 
layers. In each layer, the material is functionally graded in 
length, width and thickness directions. Thus, the modulus of 
elasticity in the i-th layer,  Ei , is a function of x, y and z, i.e. 

  
Ei = Ei x, y,z( ) , where   i =1,2,...,n .  

 
Fig. 1. Beam portion with the delamination crack front (1 – front 
position before the increase of crack, 2 - front position after the increase 
of crack). 
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 The dealamination was analyzed in terms of the strain 
energy release rate by using methods of linear-elastic 
fracture mechanics. In order to derive the strain energy 
release rate, a small increase,  ΔAa , of the crack area was 
assumed (the external load was kept constant). The strain 
energy release rate, G, for linear-elastic materials can be 
expressed as [16] 
 

 
G =

ΔU
ΔAa

,                                                                             (1) 

 
where  
 

 ΔAa = bsΔa .                                                                         (2)  
  
 In Eq. 1,  ΔU  is the change of strain energy that can be 
written as     
 

 ΔU =Ua −Ub ,                                                 (3)  

where  Ub  and  Ua  are the strain energies before and after 
the increase of crack area, respectively. By combining of 
Eqs.  1, 2 and 3, G can be written as 
 

 
G =

U a−Ub

bsΔa
.                                                                       (4) 

 
Eq. 4 was used to obtain the strain energy release rate in the 
present paper. 

 
Fig. 2. Beam cross-section, TK, before the increase of crack.  
 
 The beam cross-section before the crack increase is 
shown in Fig. 2. The strain energy before the crack increase 
was written as 
 

  
Ub = Δa

i=1

i=n

∑ u0i dAi
( Ai )
∫∫ ,                                                        (5) 

 
where  Ai  is the are of i-th layer. The strain energy density, 

  u0i , in the i-th layer was expressed as 

  
u0i =

σ i
2

2Ei

.                                                                    (6) 

 
 The stress distribution in the i-th layer was obtained by 
the Hooke’s law 
 

 σ i = Eiε ,                                                                             (7) 
 
where ε  is the strain distribution.   
 
 It was assumed that in the i-th layer 

 
EHi

, 
 
EQi

 and 
 
ERi

 

are the values of modulus of elasticity in points  Hi ,  Qi  and 

 Ri , respectively (Fig. 2). The present analysis was carried-
out assuming linear variation of the modulus of elasticity, 

 Ei , along the width and thickness of each layer. Therefore, 
the distribution of modulus of elasticity in the i-th layer was 
expressed in a function of   y3  and   z3  through 

 
EHi

, 
 
EQi

 and 

 
ERi

 by using the following equation [17] of a plane that 

passes via three points of coordinates (
 
EHi

,
  
y3Hi

,
  
z3Hi

),  

(
 
EQi

,
  
y3Qi

,
  
z3Qi

) and (
 
ERi

,
  
y3Ri

,
  
z3Ri

): 

 

  

Ei y3 z3 1
EHi

y3Hi
z3Hi

1

EQi
y3Qi

z3Qi
1

ERi
y3Ri

z3Ri
1

= 0 ,  i =1, 2, ..., n                                        (8) 

 
It should be noted that 

 
EHi

, 
 
EQi

 and 
 
ERi

are functions of x, 

since they vary continuously along the beam length.  
 The strain distribution was analyzed assuming validity of 
the Bernoulli’s hypothesis for plane sections, since the span 
to height ratio of beams considered is large. It should be 
mentioned that the Bernoulli’s hypothesis has been 
frequently used in fracture studies of functionally graded 
materials [13, 14]. Concerning the application of Bernoulli’s 
hypothesis in the present paper, it can also be noted that due 
to the fact that the multilayered functionally graded beam is 
under a combination of bending moments and an axial force 
(Fig. 2), only the longitudinal strain, x ε , is non-zero. Thus, 
the small strain compatibility equations indicate that, ε  is 
distributed linearly in beam cross-section. Therefore, the 
strain, ε, was expressed in a function of   y3  and   z3  by using 

the strains,  εT ,  εD  and  εK , in points T, D and K. For this 
purpose, the following equation of a plane [17] that passes 
though points, ( εT ,  y3T ,  z3T ), ( εD ,  y3D ,  z3D ) and 

( εK ,  y3K ,  z3K ), was applied:  
 

  

ε y3 z3 1
εT y3T z3T 1
εD y3D z3D 1
εK y3K z3K 1

= 0 .                                                                (9) 
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 The strains,  εT ,  εD  and  εK , can be determined from the 
following equations for equilibrium of the beam cross-
sections (Fig. 2): 
 

  
N = σ i dAi

( Ai )
∫∫

i=1

i=n

∑ ,                                                              (10) 

 

  
M y = σ iz3 dAi

( Ai )
∫∫

i=1

i=n

∑ ,                                                         (11) 

 

  
Mz = σ i y3 dAi

( Ai )
∫∫

i=1

i=nL

∑ ,                                                        (12)  

 
where N, 

 
M y and  Mz  are the axial force and the bending 

moments for   y3  and   z3  axes, respectively (Fig. 2). The 

stress,  σ i , in Eqs. 10, 11 and 12 can be expressed by using 

the Hooke’s law Eq.7, where the moduli of elasticity,  Ei , 
and the strain, ε, are determined by Eqs. 8 and 9, 
respectively. Then Eqs. 10, 11 and 12 have to be solved with 
respect to   r1 ,   r2  and   r3  for a particular form of the beam 
cross-section. The results of strain analysis can be applied to 
calculate the strain energy density that is used to determine 
the strain energy,  Ub .  

 
Fig. 3. Beam cross-section, TK, after the increase of crack.  
 
 The strain energy,  Ua , after the crack increase was 
found as 
 

  
Ua =Ua1

+Ua2
,                                                    (13) 

 
where  an

  
Ua1

d 
  
Ua2

 are the strain energies in the lower and 

upper crack arm, respectively. The geometry and loading of 
cross-section of crack arms after the increase of crack are 
shown schematically in Fig. 3. The lower and upper crack 
arm thicknesses are   h1  and   h2 , respectively. The number of 

layers in the lower and upper crack arm are  nL  and  nU , 
respectively. The strain energy in the lower crack arm was 
written as 
 

  
Ua1

= Δa
i=1

i=nL

∑ u01i dALi
( ALi )
∫∫ ,                                                  (14) 

 
where   u01i  and  ALi  are the strain energy density and the area 
of i-th layer of lower crack arm. The strain distribution, ε, in 
the lower crack arm was analyzed by Eq. 9. For this purpose, 

  y3  and   z3  were replaced with   y1  and   z1 , respectively (the 

axes   y1  and   z1  are shown in Fig. 3). Also,  εT  and  εD  were 

replaced with 
  
εS1

 and 
  
εD1

, respectively. The strains, 
  
εS1

, 

  
εD1

and  εK  were determined from Eqs. 10, 11 and 12. For 

this purpose, N, 
 
M y ,  Mz , n,   y3 ,   z3  and  Ai  were replaced 

with   N1 , 
  
M y1

, 
  
Mz1

,  nL ,   y1 ,   z1  and  ALi , respectively.   

 The strain energy, 
  
Ua2

, in the upper crack arm was 

written as 
 

  
Ua2

= Δa
i=1

i=nU

∑ u02i dAUi
( AUi )
∫∫ ,                                                 (15) 

 
where   u02i  and  AUi  are, respectively, the strain energy 
density and the area of i-th layer of upper crack arm (Fig. 3). 
Also,   y3  and   z3  were replaced, respectively, with   y2  and 

  z2  in Eq. 9. Besides,  εD  and  εK  were replaced, 

respectively, with 
  
εS2

 and 
  
εD2

. In order to determine 
  
εS2

, 

  
εD2

 and  εT   Eqs. 10, 11 and 12 were modified by replacing 

of N, 
 
M y ,  Mz , n,   y3 ,   z3  and  Ai  with   N2 , 

  
M y2

, 
  
Mz2

, 

 nU ,   y2 ,   z2  and  AUi , respectively. The following 
equilibrium equations of beam cross-section (Fig. 2 and Fig. 
3):   
 

  N2 = N − N1 ,                                         (16) 
 

  
M y2

= M y − M y1
+ N hC2

− hC3
( )− N1 hC2

− hC1
( ) ,                (17)  

 

  
Mz2

= M − Mz1
                                                                 (18) 

 
were used in order to express bending moments, 

  
M y2

 and 

  
Mz2

, and the axial force,   N2 , in the upper crack arm in 

functions of 
 
M y ,  Mz , N  and 

  
M y1

, 
  
Mz1

and   N1 . 

 By substituting of Eqs. 5, 13, 14 and 15 in Eq. 4, we 
derived 
 

  
G =

1
bS i=1

i=nL

∑ u01i dALi
( ALi )
∫∫ +

i=1

i=nU

∑ u02i dAUi −
i=1

n

∑ u0i dAi
( Ai )
∫∫

( AUi )
∫∫

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ (19) 

 
 By Eq. 19, one can calculate the strain energy release 
rate for delamination cracks in multilayered functionally 
graded beams by analyzing the strain energy in the beam 
cross-sections ahead and behind the crack front only.  
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3. Analysis of the strain energy release rate in the 
multilayered functionally graded ELS beam 
 
The strain energy release rate in the multilayered 
functionally graded ELS beam shown in Fig. 4 was analyzed 
by applying Eq. 19. There is a delamination crack of length, 
a, located arbitrary along the beam height. The lower and 
upper crack arm thicknesses are   h1  and   h2 , respectively. 
The beam has a rectangular cross-section of width, b, and 
height, 2h. The beam length is l. The external loading 
consists of a bending moment, 

 
M y , applied at the free end 

of lower crack arm (Fig. 4). Thus, the upper crack arm is 
free of stresses. The beam is clamped in section, B. In each 
layer, the modulus of elasticity varies linearly along the 
width and thickness of layer.  It was assumed also that the 
moduli of elasticity 

 
EHi

, 
 
EQi

 and 
 
ERi

 in points  Hi ,  Qi  and 

 Ri  in the i-th layer (Fig. 5) vary along the beam length 
according to the following bi-quadratic laws: 
 

  
EHi

= EH0 i
+

EH1i
− EH0 i

l4 x4 ,                                               (20) 

 

  
EQi

= EQ0 i
+

EQ1i
− EQ0 i

l4 x4                                                   (21) 

 

  
ERi

= ER0 i
+

ER1i
− ER0 i

l4 x4 ,                                                 (22) 

 
where, 
 
  i =1, 2, ..., n ,                                                                    (23) 
 
  0 ≤ x ≤ l .                                                                          (24)  
 
 

 
Fig. 4. The functionally graded multilayered ELS beam configuration.  
 
In Eqs. 20, 21 and 22 

  
EH0 i

, 
  
EQ0 i

 and 
  
ER0 i

 are the moduli of 

elasticity in points,   H0i ,   Q0i  and   R0i , respectively (Fig. 5). 

The moduli of elasticity in points,   H1i ,   Q1i  and   R1i ,  are  

  
EH1i

, 
  
EQ1i

 and 
  
ER1i

, respectively.  

 
Fig. 5.  Notations in the i-th layer of the ELS beam. 
 
  
 First, the strain energy density in the beam cross-section, 
TDK, ahead of the crack front was analyzed (Fig. 6). The 
distribution of modulus of elasticity,  Ei , in the i-th layer 
was obtained by using Eq. 8. For this purpose, by 
substituting of  
 

  
y3Hi

= −b / 2 , 
  
z3Hi

= z3i , 
  
y3Qi

= b / 2 , 
  
z3Qi

= z3i , 
  
y3Ri

= b / 2  

and 
  
z3Ri

= z3i+1  in Eq. 8, we derived 

  Ei = q1i y3 +q 2i z3 +q3i ,                                                       (25) 
 
where  
 

  
q1i =

EHi
z3i − z3i+1( )+ EQi

z3i+1 − z3i( )
b z3i+1 − z3i( )

,                                (26) 

 

  
q2i =

ERi
− EQi

z 3i+1−z 3i

,                                                                 (27) 

 

  
q3i =

EHi
z3i+1 − z3i( )+ EQi

z3i+1+ z3i( )−2ERi
z3i

2 z3i+1 − z3i( )
,                 (28) 

 
  i =1, 2, ..., n .                                                         (29) 
 In Eqs. 26, 27 and 28 

 
EHi

, 
 
EQi

 and 
 
ERi

are calculated, 

respectively, by Eqs. 20, 21 and 22 at  x = a . 
 The strain, ε, in the beam cross-section, TDK, was 
expressed by Eq. 9. For this purpose (Fig. 6),    
 

  y3T = −b / 2 ,   z3T = −h ,   y3D = b / 2 ,   z3D = h ,   y3K = b / 2  and 

  z3K = h                                    (30) 
 
were substituted in Eq. 9. In this way, we obtained 
 

  ε = r1y3 + r 2 z3 + r3 ,                                                             (31) 
 
where  
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r1 =

1
b
ε D−εT( ) ,                                                (32) 

 

  
r2 =

1
2h

ε K−εD( ) ,                                                              (33) 

 

  
r3 =

1
2
ε K+εT( ) .                                                      (34) 

 
Fig. 6. The un-cracked beam portion ahead of the crack front.  
 
 

In order to determine the quantities,   r1 ,   r2  and   r3 , the 
equilibrium Eqs. 10, 11 and 12, were re-written as 

  

N =
i=1

i=n

∑ σ i dy3

−
b
2

b
2

∫
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
dz3

z3i

z3i+1

∫ ,                                          (35) 

  

M y3
=

i=1

i=n

∑ σ iz3 dy3

−
b
2

b
2

∫
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
dz3

z3i

z3i+1

∫ ,                        (36) 

 

  

Mz3
=

i=1

i=n

∑ σ i y3 dy3

−
b
2

b
2

∫
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
dz3

z3i

z3i+1

∫ ,                            (37) 

 where (Fig. 6)    
 
  N = 0 ,                                                                           (38) 
 

  
M y3

= M y ,                                                                        (39) 

 

  
Mz3

= 0 .                                                                       (40) 

 
 By substituting of Eqs. 7, 25 and 31 in Eqs. 35, 36 and 
37, we obtained  
 

  

N =
⎡

⎣
⎢

i=1

i=n

∑ q1ir1
b3

12
z3i+1 − z3i( )+q2ir2

b
3

z3i+1
3 − z3i

3( )+

q3ir2
b
2

z3i+1
2 − z3i

2( )+q 2i r3
b
2

z3i+1
2 − z3i

2( )+

+q3ir3b z3i+1 − z3i+1( )
⎤

⎦
⎥

,         (41) 

 

  

M y3
=

⎡

⎣
⎢

i=1

i=n

∑ q1ir1
b3

24
z3i+1

2 − z3i
2( )+q2ir2

b
4

z3i+1
4 − z3i

4( )+

+q3ir2
b
3

z3i+1
3 − z3i

3( )+

+q2ir3
b
3

z3i+1
3 − z3i

3( )+q3ir3
b
2

z3i+1
2 − z3i

2( )
⎤

⎦
⎥

,      (42) 

 

  

Mz3
=

⎡

⎣
⎢

i=1

i=n

∑ q2ir1
b3

24
z3i+1

2 − z3i
2( )+q3ir1

b3

12
z3i+1 − z3i( )+

+q1ir2
b3

24
z3i+1

2 − z3i
2( )+

+q1ir3
b3

12
z3i+1 − z3i( )

⎤

⎦
⎥

.     (43) 

  
 The MatLab software can be used to solve Eqs. 41, 42 
and 43 with respect to   r1 ,   r2  and   r3 . Then   r1 ,   r2  and   r3  can 
be substituted in Eq. 31 to obtain the strain distribution in 
the cross-section of the beam ahead of the crack front.   
 At 

 
EHi

=
 
EQi

=
 
ERi

= E  from Eqs. 31, 41, 42 and 43, we 

derived 
 

  
ε =

3M y3

2bh3 z3 .                                                                      (44) 

 
 It should be noted that Eq. 44 is exact match of the 
formula for strain distribution in a homogeneous beam of 
rectangular cross-section,   b×2h , loaded in bending by a 
moment, 

  
M y3

, [18].    

 The strain energy densities in the layers ahead of the 
crack front can be derived by substituting of Eqs. 7, 25 and 
31 in Eq. 6. 
 The analysis of strain energy densities,   u01i , in the layers 

of lower crack arm cross-section,   S1D1K , behind the crack 
front (Fig. 7) was carried-out in the following manner. Eqs. 
25 and 31 were used to determine the modulus of elasticity 
and strain distribution, respectively. For this purpose,   y3 , 

  z3 ,    r1 ,   r2 ,   r3 ,   z3i ,   z3i+1  and n were replaced, respectively, 

with   y1 ,   z1 ,   r1L ,   r2 L ,   r3L ,   z1i ,   z1i+1  and  nL  in Eqs. 25, 31, 
41, 42 and 43. Then the strain energy densities were 
calculated as 
 

  
u01i =

σ i
2

2Ei

,                                                                         (45) 

 
 where the stress was determined by the Hooke’s law. 
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Fig. 7. The lower crack arm cross-section behind the crack front.  
 

 The strain energy density in the upper crack arm is zero. 
Thus, in view of the fact that for the ELS beam 
 

 bS = b                                                                              (46) 
  
 Eq. 19 was re-written as  
 

  

G =
1
b i=1

i=nL

∑ u01i

−
b
2

b
2

∫ dy1 dz1 −
i=1

i=n

∑ u0i dy 3dz3

−
b
2

b
2

∫
z3i

z3i+1

∫
z1i

z1i+1

∫
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.   (47) 

 By substituting of   u0i  and   u01i  in Eq. 47, we obtained 

 

  

G =
⎡

⎣
⎢

i=1

i=nL

∑ r1Lr2 Lq1i
b2

24
z1i+1

2 − z1i
2( )+ r1Lr3Lq1i

b2

12
z1i+1 − z1i( )+ r1L

2 q2i
b2

48
z1i+1

2 − z1i
2( )+

+
1
8

r2 L
2 q2i z1i+1

4 − z1i
4( )+ 1

4
r3L

2 q2i z1i+1
2 − z1i

2( )+ 1
3

r1Lr3Lq2i z1i+1
3 − z1i

3( )+

+r1L
2 q3i

b2

24
z1i+1 − z1i( )+ 1

6
r2 L

2 q3i z1i+1
3 − z1i

3( )+ 1
2

r3L
2 q3i z1i+1 − z1i( )+

+
1
2

r1Lr3Lq3i z1i+1
2 − z1i

2( )
⎤

⎦
⎥−

    

     

  

−
⎡

⎣
⎢

i=1

i=n

∑ r1r2q1i
b2

24
z3i+1

2 − z3i
2( )+ r1r3q1i

b2

12
z3i+1 − z3i( )+ r1

2q2i
b2

48
z3i+1

2 − z3i
2( )+

+
1
8

r2
2q2i z3i+1

4 − z3i
4( )+ 1

4
r3

2q2i z3i+1
2 − z3i

2( )+ 1
3

r1r3q2i z3i+1
3 − z3i

3( )+

+r1
2q3i

b2

24
z3i+1 − z3i( )+ 1

6
r2

2q3i z3i+1
3 − z3i

3( )+ 1
2

r3
2q3i z3i+1 − z3i( )+

+
1
2

r1r3lq3i z3i+1
2 − z3i

2( )
⎤

⎦
⎥

.                          (48) 

 
  
  
 Eq. 48 determines the strain energy release rate in the 
multilayered functionally graded ELS beam configuration 
 By substituting of   n = nL =1 ,   h1 = h  and 

 
EHi

= EQi
= ERi

= E  in Eq. 48, we derived 

 

  
G =

21M y
2

4Eh3
,                                                           (49) 

 
which is exact match of the formula for strain energy release 
rate when the ELS beam is homogeneous and the 
delamination crack is located in the beam mid-plane [16]. 
 An additional analysis of the strain energy release rate in 
the multilayered functionally graded ELS beam was 
performed for verification. For this purpose, the fact [19] 
that for linear-elastic materials the strain energy release rate 
can obtained by differentiating the beam strain energy, U, 
with respect to the crack area,  Aa , was used  
 

 
G =

dU
dAa

,                                                                           (50) 

where  
 

 dAa = bda .                                                                       (51) 
 
 In Eq. 51,  da  is an elementary increase of the crack 
length. By combining of Eqs. 50 and 51, we obtained 

 

 
G =

dU
bda

.                                         (52) 

 
 The multilayered functionally graded ELS beam strain 
energy was derived by integration of the strain energy 
densities in the lower crack arm (the upper crack is free of 
stresses) and in the un-cracked beam portion  
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0
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−
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2
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⎣
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⎢

⎤

⎦

⎥
⎥
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∑ ,                    (53) 

 
where x-axis is shown in Fig. 4. After substituting the strain 
energy densities,   u01i  and   u0i , in Eq. 53 and performing the 
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differentiation in Eq. 52, we obtained strain energy release 
rate that is exact match of Eq. 48. This fact verifies the strain 
energy release rate analysis developed in the present paper. 
It should be noted that G was calculated relatively simply by 
using Eq. 52 for the multilayered functionally graded ELS 
beam configuration in Fig. 4. However, for more 
complicated structures and loading conditions Eq. 19 has 
decisive advantages over Eq. 52. For instance, by applying 
Eq. 19, one can obtain the strain energy release rate by 
determining the strain energy in the beam cross-sections 
ahead and behind the crack front only in contrast to Eq. 52 
which requires analysis of the whole structure.  
 The dependences of delamination fracture behaviour of 
the three-dimensional functionally graded multilayered ELS 
beam configuration on the material gradient were elucidated. 
For this purpose, calculations of the strain energy release 
rate were carried-out by using Eq. 48. In order to get specific 
results, two three-layered ELS beams were analyzed. In the 
beam in Fig. 8a, the delamination crack is located between 
layers 2 and 3. The delamination crack in the configuration 
in Fig. 8b is between layers 1 and 2. In both configurations, 
the layer thickness is  tl  (Fig. 8). In the calculations, it was 

assumed that   tl = 0.002  m, b=0.02 m and 
  
M y =10  Nm. The 

strain energy release rate was obtained in dimensionless 
form by using the formula, 

  
GN =G / ER01

b( ) . The strain 

energy release as a function of 
  
ER

03
/ ER01

 ratio for the two 

three-layered ELS configurations at 
  
EQ01

/ ER01
= 0.5 , 

  
EH01

/ ER01
= 2 , 

  
ER

11
/ ER01

= 2 , 
  
EQ11

/ EQ01
= 2 , 

  
EH11

/ EH01
= 2 , 

  
ER

02
/ ER01

= 2 , 
  
EQ02

/ ER02
=1 , 

  
EH02

/ ER02
= 0.5 , 

  
ER12

/ ER02
= 2 , 

  
EQ12

/ EQ02
= 2 , 

  
EH12

/ EH02
= 2 , 

  
EQ03

/ ER03
= 2 , 

  
EH

03
/ ER03

=1 , 

  
ER

13
/ ER03

= 2 , 
  
EQ13

/ EQ03
= 2 , 

  
EH13

/ EH03
= 2  and   a / l = 0.5  

is shown in Fig. 9. It should be noted that 
  
ER01

 was kept 

constant in the calculations. Thus, 
  
ER

03

 was varied in order 

to generate various 
  
ER

03
/ ER01

 ratios. The diagrams in Fig. 9 

show that the strain energy release rate decreases with 
increasing of 

  
ER

03
/ ER01

 ratio (this behaviour is due to the 

increase of beam stiffness). One can also observe in Fig. 9 
that when the crack is located between layers 2 and 3, the 
strain energy release rate is higher in comparison with the 
case when the crack is between layers 1 and 2. This finding 
was attributed to the fact that the lower crack arm is thicker 
when the crack is between layers 1 and 2 (the upper crack 
arm is free of stresses).  
 The dependence of strain energy release rate on the 
length of the crack was elucidated too. The ELS beam in 
Fig. 8b was considered. The crack length was characterized 
by   a / l  ratio. The strain energy release rate in dimensionless 
form as a function of   a / l  ratio for three 

  
ER

02
/ ER01

 ratios at 

  
EQ01

/ ER01
= 0.5 , 

  
EH01

/ ER01
= 2 , 

  
ER

11
/ ER01

= 2 , 

  
EQ11

/ EQ01
= 2 , 

  
EH11

/ EH01
= 2 , 

  
EQ02

/ ER02
=1 , 

  
EH02

/ ER02
= 0.5 , 

  
ER12

/ ER02
= 2 , 

  
EQ12

/ EQ02
= 2 , 

  
EH12

/ EH02
= 2 , 

  
ER

03
/ ER01

= 0.5 , 
  
EQ03

/ ER03
= 2 , 

  
EH03

/ ER03
=1 , 

  
ER13

/ ER03
= 2 , 

  
EQ13

/ EQ03
= 2  and 

  
EH13

/ EH03
= 2  was presented in Fig. 10. Fig. 10 shows that 

increase of   a / l  ratio leads to decrease of the strain energy 
release (this can be explained by the fact that the modulus of 
elasticity in the beam cross-section in which the crack front 
is located increases with increasing of the crack length, since 
the modulus of elasticity in the beam clamped end are higher 
than in the beam free end). Also, it can be observed in Fig. 
10 that the strain energy release rate decreases when 

  
ER

02
/ ER01

 ratio increases (this behaviour should be 

attributed to the increase of beam stiffness). 
 
 
 
   

 

 
Fig. 8. Two three-layered ELS beam configurations.  
 

 
Fig. 9. The strain energy release rate in dimensionless form presented as 
a function of 

  
ER

03
/ ER01

 ratio (curve 1 – for crack between layers 2 and 

3, curve 2 - for crack between layers 1 and 2 (refer to Fig. 8)).  
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Fig. 10. The strain energy release rate in dimensionless form presented 
as a function of   a / l  ratio at three 

  
ER

02
/ ER01

 ratios. 

 
4. Conclusions 
 
Delamination fracture in three-dimensional functionally 
graded multilayered linear-elastic beam configurations 
loaded by bending moments and axial forces was studied. 
An analytical solution to the strain energy release rate was 
obtained. Beam cross-sections with one axis of symmetry 
were analyzed. The delamination crack can be located 
arbitrary between layers. The solution derived is valid for 
beams with any number of layers of different thicknesses 
and material properties. The material is functionally graded 

in width, thickness and length directions. Linear variation of 
the modulus of elasticity in width and thickness directions 
was assumed. Along the layer length, the modulus of 
elasticity can vary arbitrary. The bending moments and axial 
forces in the beam cross-sections ahead and behind the crack 
front were used to calculate the strain energy release rate. 
The solution derived was used to investigate delamination 
fracture in the three-dimensional functionally graded ELS 
beam. A quadratic law was adopted to describe the 
distribution of modulus of elasticity in beam length 
direction. Specific results were obtained for two three-
layered ELS beam configurations. The analysis indicated 
that increase of 

  
ER

03
/ ER01

 and 
  
ER

02
/ ER01

 ratios lead to 

decrease of the strain energy release rate. Also, it was found 
that increase of the crack length leads to decrease of the 
strain energy release rate when the moduli of elasticity in the 
beam clamped end are higher than in the beam free end.  
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