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Abstract 
 

Prognostic evaluation of ovarian granulosa cell tumors (GCT) is difficult because of limited case samples, differences in 
recurrence periods, and challenges in follow-up. Therefore, an evaluation method using artificial intelligence was 
proposed to provide stable prognosis on ovarian GCTs. First, data of GCT samples were preprocessed, and prognostic 
evaluation was conducted using a semi-supervised collaborative intelligence model. Experiments were conducted on 102 
samples from real GCT cases to confirm the validity of the method. Results show that the method has superior prognostic 
evaluation effect on different pathological sample sets of ovarian GCTs and has practical value to evaluate the prognosis. 
After deleting the outliers from the pathological sample sets of ovarian GCTs, the true positive rate (TPR) and false 
positive rate (FPR) are improved in the intelligent model-based prognostic evaluation, and the area under its performance 
curve is increased from 0.741 to 0.958. Prognostic evaluation of ovarian GCTs by using semi-supervised collaborative 
intelligence model can be used to evaluate the prognosis and provides a solution to the difficulties in the prognostic 
evaluation of ovarian GCTs. This method can help clinicians precisely evaluate the recurrence risk of patients, select an 
optimal treatment scheme, and increase the long-term survival ratio of patients.  

 
 Keywords: Ovarian GCT, Prognostic evaluation, Artificial intelligence, Data preprocess, Semi-supervised collaborative intelligence  
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1. Introduction 
 
Ovarian granulosa cell tumor (GCT) has morbidity between 
0.05 per 100,000 and 1.7 per 100,000 and represents 2%–5% 
of all ovary tumors and 40% of sex cord-stromal tumors [1]. 
Ovarian GCTs are divided into two sub-groups: adult 
granulosa cell tumor (AGCT) and juvenile granulosa cell 
tumor (JGCT), which account for 95% and 5% of GCTs, 
respectively [2]. Approximately 65% of AGCT cases usually 
occur in postmenopausal women, rarely occur before 
menarche. Menstrual disorder in reproductive age or 
irregular vaginal bleeding in postmenopausal age are the 
most common clinical symptoms. Approximately 80% of 
JGCTs usually occur in infants [3] and first present as 
menstrual disorder in reproductive age and irregular vaginal 
bleeding in postmenopausal age, followed by abdominal 
pain, pelvic mass, and ascite.  

Ovarian GCT is a type of tumor with low-grade 
malignancy characterized by long-term and inconsistent 
recurrence time. Extra-ovarian lesions and tumor recurrence 
result in significantly poor prognosis. Previous studies were 
limited by the rarity of cases and high loss of follow-up due 
to low morbidity and long recurrence time [3, 4]. Existing 
studies on prognostic evaluation of ovarian GCTs were 
mainly based on statistical methods, such as regression 

analysis and chi-square analysis. Limited sample cases and 
lacking consensus on related pathological index of the 
prognosis resulted in difficult prognostic evaluation of 
ovarian GCTs. Small datasets in prognostic evaluation can 
be evaluated with the help of artificial intelligence 
technology, such as a semi-supervised collaborative 
intelligence model [5]. With this breakthrough, difficulties in 
case sample size and inconsistencies in pathological features 
and clinical prognosis of ovarian GCTs can be solved.  
 
 
2. State of the art  
 
Ovarian GCTs are tumors with long-term recurrence and 
problematic prognosis-related factors [2]. Attempts have 
been made to find stable and reliable prognosis-related 
factors as basis of clinical evaluation to help clinically treat 
ovarian GCTs.  

Fox et al. reported recurrences within 2 years in half of 
GCT cases [6], whereas Schwartz et al. reported recurrences 
within 3 years in 14 out of 19 cases (73.6%) of ovarian 
GCTs [7]. However, recurrences of ovarian GCTs following 
initial diagnosis commonly occur after more than 5–10 years 
[2, 8, 9]. Sommers reported that recurrences were detected 
for more than 20 years in 6 cases of ovarian GCTs [10]. To 
date, the longest period before recurrence is 37 years [11]. 
Some studies reported clinical features, such as tumor 
recurrence, tumor spread in the pelvis, and tumor 
involvement of extra-ovarian organs, signal a poor prognosis 
of ovarian GCTs [3, 12, 13]. Concerns on the concordance 
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of pathological features and clinical prognosis of ovarian 
GCTs have been raised. Diffuse or insular pattern of tumor 
cells signal poor prognosis, whereas follicular pattern of 
tumor cells and presence of Call-Exner bodies indicate high 
differentiation and good prognosis [14, 15]. The number of 
nuclear mitosis of tumor cells, Ki-67 index, and expression 
of oncogenes and anti-oncogene markers, such as P53, P16, 
and PTEN, are related to the prognosis of ovarian GCTs [3, 
16, 17]. However, no consensus was drawn on the above 
findings. Pathological data on ovarian GCTs are 
characterized by rare sample and costly acquisition of data. 
The difficulties are explained as follows: 

 
(1) Pathological features and clinical prognosis of 

ovarian GCTs are not directly related due to limited cases 
and low persistence of follow-up as a result of long 
recurrence period. Considering this phenomenon, poor 
prognostic factors, which are obtained by regression analysis, 
have low accuracy.  

(2) Ovarian GCTs are costly and have small sample size. 
Therefore, the intelligent model should be able to address 
small sample sizes, which cannot be done by the initial 
model alone. The samples conforming to standards should 
be selected first by the intelligent model, while a prediction 
for the unlabeled samples is made by the initial model to 
improve the forecasting performance and generalization 
ability of the entire model.   

(3) Outliers, local or global, should be avoided as the 
samples are iterated in the model to prevent performance 
degradation. Outlier detection should be performed on the 
data samples, and a prognostic evaluation is made on 
detected outlier samples not iterated in the model. 
Verification needs be performed of the integrity, validity, 
and consistency of the data samples [18].  

 
We propose a prognostic evaluation method for ovarian 

GCTs. This method is suitable for small datasets and is 

combined with artificial intelligent technology. Here, 
outliers [19, 20] of datasets are deleted by data 
preprocessing, and prognostic evaluation on the pathologic 
datasets of ovarian GCTs is conducted using the semi-
supervised collaborative intelligence model.  

The rest of this study is organized as follows. Section 3 
presents the research methods, which include the pre-
processing method and the semi-supervised collaborative 
intelligence model for making the prognostic evaluation on 
the pathologic datasets of ovarian GCTs. Section 4 is the 
discussion of related experiments and result analysis, which 
is conducted on 102 samples of ovarian GCTs collected 
from January 2007 to April 2017. Section 5 is a summary in 
which related conclusions are made.  
 
 
3. Methodology  

 
3.1 Pathologic data preprocessing of ovarian GCTs  
Initial pathological data have lower quality than that 
required by the intelligent model [18]. Therefore, 
preprocessing of initial data is a prerequisite for the 
prognostic evaluation on ovarian GCTs using the semi-
supervised collaborative intelligence model.  
 The data preprocessing includes data cleaning based on 
expert rules and improved outlier detection algorithm based 
on density. Data cleaning verifies the uniqueness, integrity, 
validity, and consistency of the data according to clinical 
significance of the pathologic data of ovarian GCTs. 
Improved outlier detection algorithm based on density is 
proposed to simultaneously detect local and global outliers 
and avoid iteration of the outliers by the intelligent model 
[18, 21]. Density is defined as the reciprocal of average 
distance from k–nearest neighbor samples and an isolated 
point in a lower density region [22]. The algorithm flowchart 
is shown as Fig. 1, and its specific implementing procedure 
is described as follows.  
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Fig. 1.  Improved outlier detection algorithm based on density 
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Step 1) Centralization and normalization using Eq. (1) are 
made in samples within [0, 1.0], where max and min are the 
maximum and minimum values, respectively, in the column 
where sample x is located.  
 
* min
max min
xx −

=
−                                                 (1) 

 
 Data items in large dimensions are used directly in 
modeling and thus result in the distortion of the model 
because of the difference in dimension of each pathological 
sample [23, 24]. Thus, normalization is needed for each item 
in the sample sets.  
 
Step 2) Sample sets are normalized according to Eq. (2) by 
calculating Euclidean distances between each sample point 
and the other sample points.  
 

2 2
1 1( , ) (x y ) ... (x y )i j i j im jmd x y = − + + −            (2) 

 
where iX  and 

j
Y  are the two samples of normalized 

pathological sample sets, and m is the dimensional data 
items recorded in the samples.  
 
 Step 3) Euclidean distances between iX  and other samples 
are sorted in ascending order, where k points, k samples 
nearest to iX , are found and added into k-neighborhood 

ikΩ , 

largest k-distance - (X )ik d  of iX  is obtained, and number 
of the votes for the k-neighborhood of the corresponding 
sample plus 1, namely:  
 
- (X ) Max(d( , Z )), ( )

i i j j ik
k d X Z= ∈Ω         (3) 
 
 The last n samples are found and added into the n-
Farthest neighbor 

inΩ of iX , and the number of the votes 
for each sample in the farthest neighbor plus 1, namely: 
 

ket(P ) ket(P ) 1, ( )
i i n in

Tic Tic P= + ∈Ω            (4) 
  
Step 4) Accessible density (X )

i
ρ  of each sample 

i
X  is 

calculated. Accessible distance Re (Z )
j

ach of each point 
j
Z  

in the k-neighborhood is computed according to Eq. (5), 
where the k -distance of 

j
Z  is the longest Euclidean 

distance (X , )
i j

d Z  between 
j
Z  and 

i
X . 

 
Re (Z ) Max( - (Z ), (X , ))

j j i j j ik
ach k d d Z Z= ∈Ω,         (5) 

 
 The accessible density (X )iρ  of iX  is calculated 

according to Eq. (6) and is the product of k  and the 
reciprocal of the sum of the accessible distance 
Re (Z )

j
ach of each point jZ in the k -neighborhood.  

 

(X )
Re (Z )

j ik

i j ik
j

Z

k Z
ach

ρ

∈Ω

= ∈Ω∑ ,                (6) 

 
Step 5) local outlier factor (X )

i
LOF  of iX  is calculated 

according to Eq. (7) and is the average of the ratios between 
accessible density (Z )jρ iX  of each point in the k-

neighborhood of iX  and accessible density (X )iρ  of iX . 
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∑
              (7) 

 
Step 6) The local isolated points are selected. If local outlier 
factor of a sample is greater than the thresholdVALUE , then 
the outliers are determined as the local isolated points.  
Step 7) The global isolated points are selected. Samples are 
found in the number of the votes for the farthest neighbor 
greater than the threshold TICKET  and the number of the 
votes for the nearest neighborhood smaller than the 
threshold NK.  
 
3.2 Prognostic evaluation of ovarian GCTs based on the 
semi-supervised collaborative intelligence model  
An initial model is trained from labeled samples by semi-
supervised learning, and unlabeled data are predicted by 
auto-mark strategy. This step improves the generalization 
ability of the model to learn and obtain from a small amount 
of labeled samples by using efficient information implied in 
unlabeled data [25, 26]. Co-training is important in semi-
supervised learning [27, 28]. Zhou et al. proposed a Tri-
Training model that is based on Co-training and eliminates 
the constraint that two redundant views are required to 
present in the sample sets [5]. In the present study, 
prognostic evaluation of pathological samples is conducted 
using Tri-Training model.  

Co-training is achieved by the Tri-Training model using 
three base classifiers (decision tree C4.5). First, random and 
reset sampling is performed in labeled sample sets, and three 
single-labeled sample subsets are obtained to train the three 
base classifiers. Then, an iterative tuning of collaborative 
model is conducted by selecting unlabeled samples meeting 
requirements as supplementary sample sets. Extended 
training sample sets of each base classifier are obtained by 
combining classifiers through several iterations of the 
unlabeled samples [5]. The base classifiers are retrained 
using the labeled sample sets and extended training sample 
sets. During iteration, training of Tri-Training model is 
completed when the base classifiers are not retrained. During 
iterations, combination classifiers and current base 
classifiers are crossed and combined. The iterative training 
flow of the collaborative intelligent model of Tri-Training is 
shown in Fig. 2. The specific steps are illustrated as follows.  

 
Step 1) Three single training sample subsets 1L , 2L , and 
3L  are built in the labeled sample sets by Bootstrap 

Resampling [29] to train the base classifiers 1h , 2h , and 3h , 
respectively.  
 
Step 2) Extended training samples are selected from the 
unlabeled sample sets by making a crossover and 
combination of the three base classifiers.  
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Fig. 2.  Co-training flow of tri-training model   
 

First, classification error rate ie  of the labeled sample 
sets is recorded for the current combination classifier, for 
example, 1& 2h h . When ie  satisfies the requirement of  Eq. 
(8), extended training samples are selected from the 
unlabeled sample sets. 
 

'
'  i i i

z z
e e e

z
−

< =,                                         (8) 

 
where, '

ie  is the classification error rate for the last iteration 
with initial value of 0.5. Extended training sample set d is 
selected by traversing data of the unlabeled sample set U  
and the unlabeled sample x being classified by the base of 
the combined classifiers. When there is conformity in 
classification results, attribute x and classification result y 
are added into the preparatory extended set [3]L  of the 
remaining base classifier 3h . When the number of the 
current candidate training samples is greater than that of the 
last added extended samples, flag bit bUpdate of the base 
classifiers is updated, and [3]L  is selected by Eq. (9) where, 

tL  is the t iteration, which is the sample number of the 

preparatory extended set iterated currently.  
 

1 1

1 1

t t t te L e L− −<                                                    (9) 

  
If the sample number of the current and last iterated 

extended training set satisfies the requirement of Eq. (9), 
then the whole extended training set [3]L  is retained. 
Otherwise, the current extended training set [3]L  is 
randomly sampled according to Eq. (10) by obtaining the 
extended sample set S adjusted with sample number S . 
 

1 1

1

1

1
t t

t

e L
S

e

− −

= −
⎡ ⎤
⎢ ⎥
⎢ ⎥

                                          (10) 

 
 Using many automatic labeled samples in initial iteration 
may influence the learning performance when the training is 
performed by the base classifiers using a small amount of 
labeled samples, and the distribution of the sample set is not 
completely learned. According to the verification from 

Goldman and Zhou, determining whether or not the 
extended sample set can improve classification performance 
of the classifiers using Eq. (9) is required. Thus, the initial 
training set 3 3 [3]L L L= +  is directly extended. Otherwise, 
preparatory extended set [3]L  is sampled according to Eq. 
(10) to obtain the extended sample set S , and [3]L  is 
adjusted to achieve 3 3L L S= + .  
 Here, the training sample sets of 1h  and 2h  are extended 

by using the respective combination classifiers 
2 3&h h  and 

1 3&h h  to cross-train the co-training model.  
 
Step 3) The supplementary sample sets are added into the 
three respective base classifiers in the current iteration. The 
current and extended sample sets are combined, and the 
corresponding base classifier is trained using the combined 
sample sets. The base classifier is set to update the flag bit 
bChanged to TRUE.  
Step 4) If the updated flag bit bChanged of the base 
classifier is TRUE, then Step 2 continues to make a cross-
training. Otherwise, training of the collaborative classifier 
stops.  
 
 
4 Simulation result  analysis  
 
Experiments were conducted on 102 collected cases of 
ovarian GCTs to verify the validity of data preprocessing 
and prognostic evaluation of ovarian GCTs based on semi-
supervised collaborative intelligence model.  
 
4.1 Pathological data of ovarian GCT  
Cases pathologically diagnosed by West China 2nd Hospital 
of Sichuan University from January 2007 to April 2017 were 
collected. Among the 102 cases, 87 (accounting for 85.29%) 
are AGCTs with an onset age of 16–80 years, average age of 
52.2 years. The tumor cells are mostly in follicular, insular, 
and trabecular patterns (Fig. 3). Fifteen cases (accounting for 
14.71%) were JGCTs with an onset age of 14–54 years and 
average age of 35.5 years. The cells in the group of JGCTs 
are mainly in diffuse pattern (Fig.3(d)). In AGCTs, large 
amounts of Call-Exner bodies and unobvious features of 
luteinization of tumor cells, hemorrhage, and necrosis were 
found. In JGCTs, rare Call-Exner bodies and obvious 
features of luteinization of tumor cells, hemorrhage, and 
necrosis were found.  
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(a)                                                                                               (b) 

 

        
(c)                                                                                               (d) 

 

        
(e)                                                                                               (f) 

Fig. 3.  Ovarian GCT images of typical fields under microscope. (a) Follicular pattern (SP×100). (b) Insular pattern (SP×100). (c) Trabecular pattern 
(SP×100). (d) Diffuse pattern (SP×100). (e) Call-Exner body (SP×400). (f) Luteinization of tumor cells (SP×400)  
 
 About 12 cases (accounting for 13.79%) are AGCTs 
with post-operation recurrence. While 15 cases (accounting 
for 17.24%) are AGCTs with pelvic spreading of tumor, 9 
(accounting for 8.82%) were accompanied with spontaneous 
rupture of tumor. All above cases indicated poor prognosis 
of tumors [12, 17]. Statistical results in the group showed 
that there was no significant difference (Tab. 1) between the 
clinical prognosis of AGCTs and JGCTs. Thus, 
histopathological classification is not used in subsequent 
index extraction of pathological features [17].  

Pathological slides were reviewed, and 
immunohistochemical markers such as P53, P16, PTEN, and 
Ki-67 were selected according to the literature [17]. 
Expression levels of these markers in ovarian GCTs were 
detected by En vision. Three immunophenotypes were 
confirmed as positive based on the presence of obviously tan 
granules in cell nucleus and were confirmed as positive 
cases based on the number of positive cells greater than or 

equal to 10%. Expression of Ki-67 was confirmed as 
positive based on presence of tan granules in cell nucleus 
and under 400 times light microscope. Sum of positive cells 
among 1000 cells scattered in 10 fields and the index of Ki-
67 were determined based on the counting. Pathological 
samples of ovarian GCTs contained 15 pathological indexes 
and 1 prognostic state. A part of the sample data is shown in  
Tab. 2. Fig. 3 contains images of typical fields under the 
microscope. 
 
Table 1. Comparison of clinical prognosis between AGCTs 
and JGCTs. 

prognosis-relevant factors AGCT JGCT P n=87 n=15 
spontaneous rupture of 

tumor 8 (9.20%) 1 (6.67%) 1.00 

pelvic spreading of tumor 15 (17.24%) 0 0.118 
post-operation recurrence 12 (13.79%) 0 0.205 
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Table 2. Sample data from part of cases of ovarian GCTs 

.

 Sample 1 Sample 2 Sample 3 
pathological index before after before after before after 
Call-Exner body exist 1.0 exist 1.0 exist 1.0 
nuclear mitosis 0 0.0 0 0.0 5 1.0 

cell atypism none 0.0 none 0.0 exist 1.0 
hemorrhage and necrosis none 0.0 none 0.0 exist 1.0 

 
tumor microscopic pattern 

micro-follicular exist 1.0 exist 1.0 exist 1.0 
macro-follicular exist 1.0 exist 1.0 exist 1.0 

insular none 0.0 none 0.0 none 0.0 
trabecular exist 1.0 none 0.0 exist 1.0 

ribbon exist 1.0 none 0.0 none 0.0 
diffuse none 0.0 exist 1.0 exist 1.0 

Luteinization none 0.0 none 0.0 exist 1.0 

immunohistochemical markers 

Ki-67 15% 0.15 10% 0.1 40% 0.4 
PTEN positive 1.0 focal positive 0.33 partly positive 0.67 
EGFR focal positive 0.33 negative 0.0 partly positive 0.67 

p53 focal positive 0.33 focal positive 0.33 partly positive 0.67 
prognostic status favorable 0 favorable 0 unfavorable 1 

 
 
4.2 Analysis of Experimental Results 
Detection of the integrity, validity, and conformity was 
performed on the initial pathological sample sets, which 
were normalized and standardized after deleting non-
conforming data and outliers. The rules for normalization 
and standardization of samples were as follows.  
 
 (1) For a binary data item, presence corresponds to 1 and 
absence corresponds to 0 including Call-Exner body, cell 
atypism, hemorrhage and necrosis, tumor microscopic 
pattern, luteinization, and prognostic state.  
 (2) Multivalued data items with definite values were 
discretized in accordance to a required ratio including the 
expression rate of Ki-67, PTEN, EGFR, and p53 in 
immunohistochemical markers.  
 (3) Multivalued data items with indefinite values were 
truncated by setting an upper bound of value according to 
expert rules and discretized.  
 
 Key parameters for outlier detection are shown in Tab. 3, 
including k -neighborhood, outlier threshold VALUE, N-
farthest distance, and number TICKET of the votes for 
farthest-neighbor. Set ranges of the key parameters are listed 
in line 2, adaptive step sizes in line 3, and optimized 
parameters in line 4.  

 
Table 3. Parameter settings of data preprocess algorithm. 

 K VALUE N TICKET 
parameter scope [3, 6] [1.2, 1.5] [3, 6] [3, 5] 
adjusts step-size 1 0.1 1 1 

optimized parameters 5 1.3 4 3 
 
 Prognostic evaluation on the preprocessed pathological 
samples of ovarian GCTs was performed using the semi-
supervised collaborative intelligence model. Cross validation 
of their data was conducted thrice [30] and 
clinicopathological prognosis results were considered as 
gold standards of the samples. E0, E1, and E2 are detection 
error rates on collaborative classification model of Tri-
training on the initial datasets, local isolated points, and local 
and global isolated points of ovarian GCTs. E1 and E2 were 
all deleted. During experiments, outliers data detected are 
evaluated using initial model and were not trained iteratively 
using the intelligent model. Tab. 4 lists a part of the 
experimental results of the prognostic evaluation using the 
intelligent model and parameters of the corresponding 

preprocess algorithm. Probability threshold for the poor 
prognosis of samples was set to 50%.  
 From Tab. 4, E0 (18.6%) declines to E1 (mean: 9.75%, 
min: 6.9%) and E2 (mean: 4.84%, min: 2.0%). Experimental 
data show that the iterative training of the outliers, including 
local and global isolated points, results in a degraded 
prediction performance and an increased prediction error 
rate of the model. By deleting local isolated and global 
isolated points, prediction performance of the model was 
improved, and the prediction error rate was decreased. In the 
optimized parameters, a good effect was achieved using data 
preprocessing. Better prediction effect on the preprocessed 
pathological sample sets of ovarian GCTs was achieved 
using prognostic evaluation with E2 having an average value 
of 4.84% and a minimum of 2.0%. By deleting local and 
global isolated points from the pathological sample sets of 
ovarian GCTs, accuracy of the prognostic evaluation on the 
datasets of ovarian GCTs was greater than using the initial 
datasets or the datasets where only local isolated points were 
deleted. In clinical practice, obvious differences among 
cases cause large deviations in pathological data. 
Clinicopathological work inevitably resulted in the presence 
of some data errors. The adverse influence of these abnormal 
data on the evaluation effect of the models can be avoided 
by data preprocessing while ensuring evaluation accuracy 
and improving practical performance.  
 
Table 4. Performance list of the prognostic evaluation of 

ovarian GCTs. 
K VALUE N TICKET E0 E1 E2 
3 1.1 4 3 18.6% 10.8% 4.9% 
3 1.1 4 5 18.6% 10.8% 5.9% 
3 1.1 6 3 18.6% 11.8% 6.9% 
3 1.1 6 5 18.6% 9.8% 6.9% 
3 1.3 4 3 18.6% 8.8% 4.9% 
3 1.3 4 5 18.6% 8.8% 4.9% 
3 1.3 6 3 18.6% 10.8% 4.9% 
3 1.3 6 5 18.6% 12.7% 7.8% 
5 1.1 4 3 18.6% 9.8% 6.9% 
5 1.1 4 5 18.6% 8.8% 3.9% 
5 1.1 6 3 18.6% 10.8% 5.9% 
5 1.1 6 5 18.6% 9.8% 4.9% 
5 1.3 4 3 18.6% 6.9% 2.0% 
5 1.3 4 5 18.6% 7.8% 2.9% 
5 1.3 6 3 18.6% 7.8% 2.9% 
5 1.3 6 5 18.6% 9.8% 3.9% 
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 Fig. 4 shows receiver operating characteristic (ROC) 
curves [31] for all sample sets used semi-supervised 
collaborative intelligence model. Tab.5 shows the 
performance statistics of the above ROC curves with the 
following parameters for outlier detection: nearest k -
neighborhood is 3, outlier threshold VALUE is 1.3, farthest 
distance N is 4, and the number TICKET of the votes for the 
farthest-neighbor is 3. ROC curves M1, M2, and M3 have 
values 0.761, 0.839, and 0.958, respectively (Tab. 5). This 
shows that the model in the study has a prognostic 
evaluation value (AUC>0.70) on the all above pathological 
sample sets of ovarian GCTs. M3 and M2 are greater than 
M1 indicating that the collaborative model has a greater 
prognostic evaluation value on the pathological sample sets 
of ovarian GCTs from which outliers are deleted than on 
initial pathological sample sets of ovarian GCTs. Moreover, 
M3 is greater than M2, indicating that the collaborative 
model has a greater prognostic evaluation value on the 
pathological sample sets of ovarian GCTs from which the 
local and global isolated points are all deleted than on the 
pathological sample sets of ovarian GCTs from which only 
the local isolated points are deleted. In clinical practice, 
prognostic evaluation accuracy is directly associated with 
the selection of patient’s postoperative treatment scheme and 
forms the basis of individual treatment. The specificity and 
sensibility of the evaluation on the samples of ovarian GCTs 
with deleted local and global isolated points are improved 
significantly by the collaborative model; thus, helping 
clinicians to evaluate patient’s state completely and 
accurately, optimize the treatment scheme, decrease the risk 

of tumor recurrence of patients, and increase the long-term 
survival ratio of patients.  

Based on the results, prognostic evaluation using the 
semi-supervised collaborative intelligence model on 
pathological samples of ovarian GCTs with deleted outliers 
achieved a better evaluation performance and a greater 
practical value. 
 

 
Fig. 4.  ROC performance contrast among different pathological  
datasets of ovarian GCTs by the evaluation models. 

 
Table. 5. Performance list of ROC curves for the prognostic evaluation model of ovarian GCTs.  

Pathological sample set of ovarian GCTs AUC confidence interval (95%) 
lower bound upper bound 

the initial datasets of ovarian GCTs 0.741 0.709 0.841 
the datasets of ovarian GCTs from which only the local 

isolated points are deleted 0.859 0.779 0.889 

the datasets of ovarian GCTs from which the local isolated 
points and the global isolated points are all deleted 0.958 0.922 0.981 

 
5. Conclusions 
 
Limited case samples and differences in recurrence cycles 
result in difficulties in the prognostic evaluation of ovarian 
GCTs. Here, a stable and effective prognostic evaluation 
method of ovarian GCTs is proposed in combination with 
artificial intelligent technology, which provides a way to 
solve difficulties in the prognostic evaluation. This can help 
clinicians to accurately evaluate the risk of tumor recurrence 
of patients, select the optimal treatment scheme, and 
increase the long-term survival ratio of patients. The 
following conclusions are made:  
 
 (1) The data cleaning based on expert rules can ensure 
the integrity, validity, and conformity of sample data, and 
improved outlier detection algorithm based on density can 
effectively delete local and global outliers from the 
pathological samples of GCTs.  
 (2) The semi-supervised collaborative intelligence model 
has a stable and effective prognostic evaluation effect on 
different pathological sample sets of ovarian GCTs.  
 (3) By deleting local and global isolated points from the 
pathological sample sets of ovarian GCTs, iteration of 

outlier samples by models is avoided, further improving the 
prognostic evaluation performance of the semi-supervised 
collaborative intelligence model.  
 
 This study explores the prognostic evaluation method of 
tumors by incorporating artificial intelligent technology into 
pathology. The proposed method overcomes the limited 
pathological samples of ovarian GCTs and indefinite related 
pathological indexes while achieving good prediction effect 
and great prognostic evaluation value.  
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