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Abstract 
 

The fault tolerance method of virtual machines (VM) guarantees reliability to the service capability of cloud platforms. 
VM workloads are dynamic and uncertain, and thus, they affect the reliability and task processing capability of entire 
cloud platforms. In this study, a fault tolerance method based on the VM workload consolidation model was proposed to 
solve problems concerning the reliability and task processing capability of cloud platforms caused by VM workloads, 
thus improving the reliability of VMs and overall performance of cloud platforms. First, the method was analyzed on the 
basis of the distinct relationship of VM workload and VM reliability and task processing capability. Then, the workload 
state of VM was predicted and analyzed by linear regression using VM workload monitoring data, and the VM workload 
consolidation algorithm was constructed based on expected workload constraint and optimization of fault tolerance time. 
Finally, the fault tolerance method based on the VM workload consolidation model was compared with the Radom 
method and the Max method. Research results demonstrate the potential of the proposed method to improve VM 
reliability in cloud platforms by 20% and 47% compared with those for the Radom and Max methods, respectively. In the 
same workload phase, the task completion rate of the proposed method increased significantly (15% and 30%, and 22% 
and 30%), and the percentages were higher than those for the Radom and Max methods, respectively. Moreover, the 
proposed method shortened task response time. This study concludes that the workload consolidation of VMs can 
increase the reliability and task processing capability of VMs. This proposed method can provide technological support to 
the fault tolerance of VMs in cloud platforms. 
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1. Introduction 
 
With the rapid development of cloud computing technology, 
an increasing number of enterprises has started to offer VM 
services in cloud platforms [1]. The reliability of VMs could 
directly influence cloud platform application services, such 
as e-mails, databases, web applications, and so on [2]. 
Subsequently, the fault tolerance method of VMs can 
effectively prevent failures in cloud platforms. Fault 
tolerance can also prevent the proliferation of error logs 
from one VM system to the next; consequently, cloud-based 
services that are continuously offered to the outside world 
are also improved, thus increasing the reliability of the entire 
cloud platform. However, combining the fault tolerance of 
VM workloads is necessitated prior the deployment of VM 
fault tolerance in cloud platforms. The workload state of 
VMs in cloud platforms is dynamic and uncertain [3,4]. 
Therefore, understanding how fault tolerance is deployed on 
the basis of the combined relationships of VM workload and 
VM reliability and task processing capability is imperative. 

The fault tolerance method of VMs in cloud platforms 
was developed under the abovementioned circumstance. At 

present, the existing fault tolerance method selects 
possibilities of VM errors according to the physical state of a 
server where a VM is located. However, even if it attempts 
to solve VM reliability problems, the existing method often 
fails to establish the optimization of VM fault tolerance time 
and effective consolidation of VM workload state on fault 
tolerance. The optimization of VM fault tolerance time was 
studied by using tolerance methods and models [5] to 
tolerate faults upon the assumption of possible errors. 
However, without the allocation and consolidation of VM 
workloads, the approach frequently caused fault tolerance of 
VMs, which then affected the system performance of cloud 
platforms. In discussing the effects of VM workload on fault 
tolerance [6], the VM workload layout was optimized by 
measuring network transmission speed and delay, and 
consequently, to save on bandwidth and increase efficiency. 
However, the layout neglected the impacts of CPU and 
memory workload, as well as fault tolerance time on fault 
tolerance, with the consolidation of VM workloads.  

In this study, a fault tolerance method is established 
according to the relationships of VM workload and VM 
reliability and task processing capability. The proposed 
method not only counterbalances the impacts of VM 
workload on fault tolerance to some extent, it also solves 
issues concerning the optimization of fault tolerance time. 
The proposed method also improves the reliability of VMs 
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in cloud platforms and the overall system performance of 
cloud platforms. 
 
 
2. State of the art 
 
Past works have reported a number of reliability issues of 
cloud platforms caused by VM workload [7], as well as the 
importance of VM fault tolerance to safeguard the reliability 
and available capability of cloud platforms (e.g., EC2 [8], 
Google App Engine [9], VMware [10], Xen [11], KVM [12], 
etc.). Meanwhile, most existing research has focused on the 
reactive and preventive fault tolerance methods [13]. In the 
reactive fault tolerance method, backing up the fault 
tolerance is considered a common approach. With respect to 
VM backups, Xu et al. [14] proposed the strategic planning 
of models and adaptive backups based on a genetic 
algorithm to shorten backup time. Cully et al. [15] used 
backups for entire cluster states by considering a workload 
phase, and then realized fault tolerance by recovering the 
latest check point for a cluster after error identification. 
Machida [16] reduced the number of backup servers by 
optimizing the layout of redundant VMs to ensure reliability 
(i.e., master and vice nodes were backed up in intervals for 
fault tolerance). However, the method was costly and 
necessitated an optimization of fault tolerance time. In the 
preventive fault tolerance method, fault tolerance is 
conducted following a resource workload state analysis [17]. 
VMs are transferred to another server to ensure normal 
service operations, and this is carried out by studying fault 
tolerance trigger points and the fault tolerance model. The 
preventive fault tolerance method also mainly involves 
workload balancing technology [18, 19], energy saving 
technology [20], system consistence technology [21], and so 
on. Zhang et al. [22] analyzed a running resource state with 
the hidden Markov model, calculated the future running state 
probability of a system, and conducted dynamic adjustments 
in system resource allocation to increase the efficiency of 
VM recovery against failures. Mallick et al. [23] performed 
clustering analysis on resource states using different 
numerical ranges of historical resource workload indices. A 
cluster was designated to a state point, and the short-term 
resource state was predicted with the Markov model. Bruneo 
et al. [24] reported that VM could be restarted regularly with 
a VM software recovery strategy to solve the aging failure of 
VM caused by workload and protect the availability of VM. 
Wu et al. [25] proposed a developmental method for model-
based fault tolerance and realized seven middle fault-
tolerance-mechanisms in cloud platforms, thus realizing the 
cross-platform characteristics of the fault tolerance 
mechanism. However, those methods could neither protect 
the fault tolerance time of VMs nor guarantee effective 
workload consolidation, and they were also costly for system 
operations. In addition, system reliability decreased when 
the workload pressure of the cloud platform system was 
large. 

To solve the above reliability problems, this study 
proposes the reduction of VM workload by using a VM 
workload consolidation algorithm that is based on the 
relationship of VM workload and VM reliability and task 
processing capability. When the server workload expectation 
exceeds the threshold, the VM system adopts fault tolerance 
processes in anticipation of VM errors. The fault tolerance 
time of VM is optimized to reduce fault tolerance frequency, 
thereby protecting the availability and improving the 
performance of the cloud platform system. 

This study is presented as follows: Section 3 introduces 
the measurement of the server-VM workload, the VM 
workload prediction model, the reliability model, and the 
fault tolerance method. Section 4 presents the experiment 
and the result analysis. Section 5 provides the conclusions. 
 
 
3. Methodology 

 
3.1 Measurement of server-VM workload 
VM workload is strongly dynamic, and thus, measuring 
resource workload can effectively identify the state of 
resources. Establishing whether or not a VM is overloaded 
can be determined by the resource states. Therefore, 
choosing the appropriate measurement for resource 
workload can enhance workload consolidation and increase 
VM reliability. 

Definition 1: Workload phase. Workload phase refers to 
a time interval during VM operation. The VM workload is 
relatively stable in a single workload phase, and this is 
expressed as 1 1={ ,... , ,...}j j jl l l l + . 

This definition can be used to measure the change rate of 
VM workload in the workload phase. When the VM is in 
running state, the change in workload from phase 1jl −  to 
phase jl  reflects the workload state in this particular 
workload phase. 

Definition 2: Server workload expectation. Workload 
expectation refers to the average measure of server 
computing resources that are occupied by the VM after 
virtualization. 

In cloud platform systems, the resource pool is 
composed of a series of servers. Each server is expressed by 
iS  and the server resource cluster of cloud environment is 

1 2 nS={S ,S ...S } . In the initial state, each node server iS  is 
assumed to be allocated with k VMs in i 1S ( ... )kvm vm , where 

kvm  represents the number of VMs. Each server iS  contains 
multiple hardware resources, such as CPU, memory, 
network, and so on. 

The VM workload discussed in this study mainly refers 
to two hardware resources: CPU and memory. The 
proportion of CPU and memory of VM are expressed as 
Cvcpu  and Cvmem . The CPU and memory resources of each 
VM are regularized to 1. 

VM workload is calculated based on CPU utilization 
vcpuλ  and memory utilization vmenλ . The workload of kvm  on 

node server iS  in the workload phase jl  is expressed as: 
 
i,k ( C CW )j vcpu vmen vmvcpu enl λλ += .                      (1) 
 
The calculated workload of server iS  in workload phase 

jl  is the workload sum for all VMs as follows: 
 

m

i i,k
k 1

W ( ) W ( )j jl l
=

=∑ .                                   (2) 

 
In this study, the server workload expectation is defined 

as: 
 

i( )  E(
W (

m
)

)j
j

l
l =S ,                                 (3) 
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where m  is the number of VMs on server iS . 

Server workload expectation reflects the average 
proportion of VM workload on server resources. When 
( )jlS  is exceedingly large, the VMs occupy relatively more 

server resources in workload phase jl  and thus are 
overloaded. An overload constraint ( )Ω  is set for the 
overload decision strategy ( )jl <ΩS , where Ω  denotes the 
degree of overload. Given that the total workload of the 
server in workload phase jl  is lower than Ω , i.e., 0<Ω <1, 
the VM resource allocation attempts to reduce the degree of 
overload. In addition, given that the expression claims 
extensive system resource consumption for the migration 
fault tolerance of VMs, the system can tolerate a certain 
degree of overload. However, system performance declines 
significantly when overloading is reached at a certain point, 
and this occurrence reduces reliability. 

 
3.2 VM workload prediction model 
The VM workload is strongly correlated with time on the 
basis of the VM workload measurement; in other words, the 
VM workload of the previous workload phase significantly 
affects those of the next phase. Therefore, VM workload can 
be predicted by linear regression. The timeliness and 
accuracy of VM workload prediction for the succeeding 
workload phases not only affect the cloud computation of 
VM reliability, they also influence the optimization of VM 
fault tolerance time. 

In this study, i,k 1W ( )l  denotes the initial workload of 

kvm  on server iS , while i,kW ( )jl  denotes the VM workload 
in workload phase jl . Based on the changes in the VM 
workload for a workload phase:  

 
 

i,k i,k 1( W ( ))W ( )j j jl l lϖ−= + ,                      (4) 
 

where i,k ( )jlϖ  is the observed change rate of workload of 

kvm  on server iS  in workload phase jl . In previous 
workload phases 1 1={ ,... , ,...}j j jl l l l + , the workload variation 
set is i,k i,k i2 k i,k3,( ) { ( ), ( ),... ( )}jj l l llϖ ϖ ϖ ϖ= . 

VM workload is predicted by linear regression on the 
basis of VM dynamics. From the definition of general linear 
regression, the estimation function is:  

 
i,k 1 0 1 1ˆ ( ) *j jl lϖ θ θ+ += + ,                        (5) 

 
where i,k 1ˆ ( )jlϖ +  is the predicted VM workload change rate of 
the next workload phase. From the VM workload change 
rates in previous phases, the coefficients 0θ  and 1θ  are 
obtained by solving the linear regression equation with the 
least square method. Moreover, 0θ  and 1θ  change with 
historical workload change rates. By using this method, 
dynamically adjusting the parameters of the linear regression 
model based on workloads in the latest phase is feasible. 
Thus, the method can adapt to workload fluctuations. we 
define 0θ  and 1θ  in the following way: 

 

2
i,k i,k

0 2 2

( ) * ( )
( )

j j j j j

j j

l l l l l
n l l
ϖ ϖ

θ
−

=
−

∑ ∑ ∑ ∑
∑ ∑

        (6) 

 

i,k i,k
1 2 2

* ( ) ( )
( )

j j j j

j j

n l l l l
n l l
ϖ ϖ

θ
−

=
−

∑ ∑ ∑
∑ ∑

.             (7) 

 
On the basis of workload change rate i,k 1ˆ ( )jlϖ +  in the 

next workload phase jl , the predicted VM workload 

i,k 1Ŵ ( )jl +  can be calculated from equation (4). The server 

workload expectation 1
ˆ( )jl +S  can be obtained from equation 

(3). If 1
ˆ ( )jl + Ω<S , then the server is not overloaded in 

workload phase 1jl + ; that is, the server is running reliably, 
and workload consolidation allocation is conducted. 

 
3.3 VM reliability model 
Given that server reliability is a random distribution event of 
time, the faults are influenced by sudden workload increase 
in cloud platform systems and errors accumulate of VMs. 
These faults are considered as random faults, such as system 
breakdown caused by sudden increases in VM workload, 
which occur occasionally. Studying the system fault log [26-
28] showed that server reliability complied with Weibull 
distribution. In this study, server reliability distribution was 
verified by an experiment based on the reliability analysis of 
VMs in cloud platforms. 

Definition 3: VM reliability refers to the probability of 
VM resources to accomplish assigned functions, and it is 
one of the main evaluation indices of reliability of VM 
resources in running state. In this study, the absence of a VM 
error log is considered in VM reliability measurement; that 
is, 

kvm
R  reflects the reliability of kvm .  
The Weibull probability density distribution function of 

the two parameters is: 
 

( )
1( ) ( )   , >0

j ml
j m

j

lmf l e mη η
η η

−
−= .                 (8) 

 
The reliability function is: 
 

( )
( )

j m

k

l

vm jR l e η
−

= ,                                (9) 

 
where m  is the shape parameter; η  is the scale parameter; 
and jl  is the workload phase. VM reliability with server 
workload expectation can be expressed as: 
 

|( ) { |  ( )}
kvm j j jR l R t l l= ≤ S .                 (10) 

 
The VM reliability in the model is designated with a 

lower value than the system threshold for fault tolerance. Let: 
 
( )

kvm jR l <Φ ,                                   (11) 

 
where Φ  is the threshold of system reliability. 

When the reliability value of kvm  is smaller than the 
threshold of system default, fault tolerance occurs. Choosing 
the appropriate fault tolerance time increases system 
reliability and reduces system performance loss. 



Zhixin Li, Lei Liu and Zeyu Tong/Journal of Engineering Science and Technology Review 10 (5) (2017) 41-49 

 44 

 
3.4 Fault tolerance method 
The future running state of VMs is predicted by using 
established models on VM workload and reliability in cloud 
platforms. In this section, the VM fault tolerance method is 
described. The system structure of the VM fault tolerance 
model is shown in Fig. 1. The Workload Manager module is 
implemented for workload management and consolidation, 
while the Failure Detector module is used for error detection. 

 

 
 

Fig. 1. System structure of the VM fault tolerance model 
 
 
3.4.1 Basic principle behind the fault tolerance method 
The main principle behind the fault tolerance method is 
related to the analysis of relationships of VM workload and 
VM reliability and task processing capability. By using a 
mathematical model, the mutual relationships among the 
above parameters are verified. 

Definition 4: Task processing capability of VM ( )µ . A 
high µ  of VM resources in unit time reflects strong 
resource service capability. In the expression, i,kW ( )jl  is the 
VM workload; 

kvm
R  is the reliability of kvm ; and 

kvmh  is the 
task completion rate of kvm . µ  is then defined as: 

 
i k, ,( )*ln(1 W/ ) ( )

k ki k vm j vm jR l h lµ = + .                 (12) 

 
The task processing capability of VMs reflects the 

relationship between resource workload and reliability. 
Theorem 1: If two VMs have the same ,i kµ  and i,kW ( )jl , 

where 
kvm

R  and *
kvmR  denote high and low reliabilities of 

VM *( )
k kvm vmR R>  while 

kvmh  and *
kvmh  denote the task 

completion rates of VM under high and low reliabilities, 
then *

k kvm vmh h> . 
Proof: According to known conditions, if two VMs have 

the same ,i kµ  and i,kW ( )jl , then the following can be 

derived from equation (12): , i ,kW( ( ))i k j vmk

k

R
vm

lh e µ− −
=  and 

*
, i ,kW( ( )* )i k v k

k

j mR
v

l
mh e µ− −= . 

Given that *
k kvm vmR R> , we can deduce that *

k kvm vmh h> . 

Theorem 1 indicates that the higher the VM reliability is, 
the higher the task completion rate will be. In other words, 
increasing VM reliability can protect the task completion 
rate of the cloud platform. 

Theorem 2: Given the same context and constant task 
processing capability ,i kµ  and task completion rate 

kvmh  of 
VMs in a single workload phase, if i,k i,k 1W W( ) ( )j jl l +< , then 

1( ) ( )
k kvm j vm jR l R l +> . 
Proof: According to known conditions (i.e., the same 

context and constant task processing capability ,i kµ  and task 
completion rate 

kvmh  of VMs in a single workload phase), 
equation (12) can be used to derive:  

 
i,k,( ) ( ( )) ln(1W / )

k kvm j i jk vmR l l hµ= −  and 

i,k1 1,( ) ( ( )) ln(/ 1W )
k kvm j i k mj vR ll hµ+ += − . 

 
Given that i,k i,k 1W W( ) ( )j jl l +< , we can deduce that 

1( ) ( )
k kvm j vm jR l R l +> . 
Theorem 2 suggests that the VM workload in the 

workload phase during the running state of VM resources is 
negatively correlated with VM reliability. Therefore, 
workload consolidation and allocation are needed to reduce 
VM workload and improve VM reliability. 

Theorems 1 and 2 establish the relationship of reliability, 
workload, and task completion rate of VMs. Subsequently, 
workload consolidation and allocation are introduced. 

Theorem 3: Given a task resource request { , 1... }q q rτ = , 
if this request is accomplished by 1n  physical machines 

11 2 n(S={S ,S ...S })  or by the same quantity of VMs 

11(SP ={ ... })i nvm vm , where the number of servers required for 
the VM to settle is 2n  2 1( )n n≤ , then the reliability of the 
VM ( )vmR  is smaller or equal to reliability of server ( )SR , 
i.e., vm SR R≤ . 

Proof: From section 3.3, if the fault probability of a 
service to 1n  physical machines obeys Weibull distribution 

1( , )sF n R− , then the expectation and variance of the fault 
probability of physical machines in the workload phase are 

1
1( ) ( , (1 ))E F n
m

η= Γ +  and 2 2
1

1 1( ) ( , [ ( 1) ( 1)])Var F n
m m

η= Γ + −Γ + . 

If 2n  physical machines 1 2( )n n≥  are used, and each 
physical machine involves m VMs, 1 2( )n n m= ∗ , then the 
VMs on these physical machines cannot run normally (i.e., 
faults are observed on the physical machines). Thus, the 
fault probability of VMs obeys Weibull distribution 
1 1( , ( ))spF n R t− , which is the same as the physical 

distribution. After virtualization, the mathematical 
expectation of fault probability in the workload phase is 

1 2
1( ) ( , (1 ))E F E n
m

η= Γ + . The corresponding variance is: 

 

1 1

1
1 1... 1...2 1...

2 2
1

( ) ( )

1 1             ( , [ ( 1) ( 1)]) . 

m m m n m n
nVar F Var Y Y Y
m

n m
m m

η

+ − += + +

= Γ + −Γ +
 

Expectedly, the following can be obtained: 
1( ) ( )Var F Var F≥ , vm SR R≤ .  

Results indicate that the higher the number of VMs on 
each server is, the higher the variance will be. The variances 
of the VM and server are equal only when there is one VM 
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on one server. By referring to the variance, the reliability of 
the VM is lower than that of the physical machine. When 
multiple VMs are operated on a physical server, the 
hardware fault affects more applications compared with 
cases wherein each physical server is responsible for a single 
task only. Hence, in the cloud platform environment, the 
reliability of the VM is lower than that of the server. In other 
words, the likelihood to develop the functions of a service 
through VM is lesser compared with that through the server. 

Theorem 4: Given task resource request { , 1... }q q rτ = , if 
the task processing capability of a VM is ,i kU  in 

, ,
1,,

r

i k i k q
q q k

U µ τ
= ≠

= + ∑ , then the average workload phase for 

task processing is ,
1,,

/
r

q i k
q q k

l Uτ
= ≠

= ∑ . If qτ  is distributed on k 

VMs uniformly, then the task processing capability is 
,1 ,{ ... }i i kµ µ , where ,i kµ  is the task processing capability of 

kvm  on server iS . The average workload phase for the task 

processing is 
   
l! = τ q

q=1

r

∑ / n1µi,k , where 1n  is the total number 

of VMs. Then, , 1 ,maxki k k i kU µ=≥  and   l ≥ l! . 
Proof: Suppose the current VM is ,1ivm vm=  and its task 

processing capability is ,1iU , then ,1 ,1
1,, 1

r

i i q
q q

U µ τ
= ≠

= + ∑ . 

When task request qτ  is considered for a VM, the 
workload of this VM increases. The task processing 
capability is 

1 1 11 i,, ( )*ln(1 ) ( )Wi vm j vm jU R l h l= + . 
A specific VM workload is higher than the average VM 

workload, which is allocated by tasks. On the basis of 
equation (3), the workload of the specific VM is higher or 
equal to the average server workload expectation 

i,1( ) ( )W j jl l≥ S . To meet the task demand, ,1 ,1i iU µ≥ . Given 
that VMs have the same configuration, then 

,1 ,1 ,{ ,... }i i i kU µ µ≥ ; that is, , 1 ,maxki k k i kU µ=≥ . 
Allocating tasks to a few VMs enhances VM task 

processing capability. However, processing time also 
increases due to limited resources. Therefore,   l ≥ l! . 

Theorem 4 shows that the average distribution of tasks 
on different VMs can shorten task processing time and 
increase processing efficiency. Whether or not the task is 
allocated to VMs on a single server or to VMs on different 
servers is determined by Theorem 5. 

Definition 5: The average task processing capability 
( )ispΡ  of server iS  in 

11{ ... }i ksp vm vm=  is the sum of VMs 
on server iS : 

 
1

1
1

1

11 1
1

i,

, 1
1

1
1

( ) /

        ( *ln(1 ) / .W ( ))  
k k

k

i i k
k

k

vm vm k
k

l

sp k

R h k

µ
=

=

Ρ =

= +

∑

∑
     (13) 

 
Theorem 5: Given a task resource request { , 1... }q q rτ =  

in which 1n  and 2n  servers are used, then 1 2n n> . The same 
quantity of VMs (

1 1{ , 1.. } 1{ ... }i i n ksp vm vm= = and 

2 2{ , 1.. } 1{ ... }i i n ksp vm vm= = ) are deployed on the server. The 

average task processing capability is 
1

( )nspΡ  when a task is 
uniformly allocated to VMs of different servers, and it is 

2
( )nspΡ  when a task is allocated to VMs of only a few 

servers. To meet task completion rate 
kvmh  and server local 

expectation Ω , we derive 
1 2

( ) ( )n nsp spΡ > Ρ . 
Proof: Given that 1 2n n>  and the total number of VMs is 

k , the average number of VMs on each server is 

1 21 1 2 2( ) ( )n nsp k k n sp k k n= = < = = . the average task 
processing capability is:  

 
1

1

1

1

11 1
1

1

1 1
1

, 1
1

1
1

1

i,

1

( ) /

        ( * ln(1 ) ( )) /

        ( * ln(1 ) / ( ) . 

W
k k

k k

k

i i k
k

k

vm vm k
k

k

vm vm i
k

sp k

R k

R h k

lh

l

µ
=

=

=

Ρ =

= +

= +

∑

∑

∑ S

 

 
According to Theorem 3, the reliability of using VMs on 

many servers is higher than that of using VMs on a few 
servers only; that is,

1 2k kvm vmR R> . On the basis of equation (3), 
the server workload expectation meets ( )i l Ω<S . 

Therefore, 
1 2

( ) ( )n nsp spΡ > Ρ  is proven. 
Theorems 3, 4 and 5 prove that allocating a task to 

different VMs on servers during workload consolidation and 
task allocation not only increases the reliability of VMs, it 
also shortens task processing time and improves processing 
efficiency. 

 
3.4.2 Optimization of fault tolerance time 
Fault tolerance of VMs results in system performance loss. 
Therefore, the fault tolerance time necessitates optimization 
to reduce fault tolerance frequency, thereby relieving 
influences on system performance and protecting normal 
service operations. 

In this study, lʹ  represents fault tolerance time, which is 
selected from the changes in predicted workloads of the 
prediction model mentioned in Section 3.2. If the predicted 
server workload expectation ˆ ( )lʹS  is higher than the 
workload expectation of system default ( )Ω , i.e., ˆ ( )lʹ >ΩS , 
then the fault tolerance of VM is implemented in lʹ . The 
best fault tolerance time in this study is determined by 
Theorem 6. 

Theorem 6: If the initial workload of kvm  on server iS  is 

i,k 1W ( )l  and the average change rate of kvm  in previous 
workload phases jl  is w , then the fault tolerance time of 

kvm is: 
 

i,k 1 0 1( )  =( W ( 1) ) /l l j w θ θʹ Ω− − ∗ −- ,              (14) 
 

where Ω  is the upper limit of workload expectation; 
i,k 1W ( )l  is the initial workload; and w  is the average 

workload change rate. Coefficients 0θ  and 1θ  are calculated 
from equations (6) and (7). 

The optimal workload phase for VM fault tolerance time 
in equation (14) is influenced by two factors: time and 
spatial changes. This approach implies that VM fault 
tolerance time is related to workload changes and VM 
workload on a few servers. To reduce fault tolerance 
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frequency, the lowest reliability of VM is chosen for fault 
tolerance. 

 
3.4.3 Fault tolerance method based on workload 
consolidation 
The task resource request { , 1... }q q rτ =  is managed by the 
Workload Manager module. According to Theorem 5, a task 
is allocated to different VMs on different servers by the 
Workload_Consolidaton function to reduce VM workload 
and increase reliability. The optimization of fault tolerance 
time ( )lʹ  is determined by the VM workload prediction 
model. Thus, the proposed method not only employed fault 
tolerance to VMs with errors, it also effectively reduced 
fault tolerance frequency and system cost, as well as 
improved system performance. The script of the fault 
tolerance method is shown in Fig. 2. 
 

 
Fig. 2. Fault tolerance method based on VM workload consolidation 
 
4. Result analysis and discussion 

 
The validity of the proposed method is verified from these 
three aspects: (1) evaluation and analysis of workload 
prediction, (2) analysis of VM reliability based on workload 
consolidation, and (3) comparison of different allocation 
strategies of task resource requests in the experiment to 
verify the validity of the proposed fault tolerance method. 
The three methods are compared in the following 
experiments: 

(1) Random: a task resource request is randomly 
allocated to a VM; 

(2) Max: concentrated allocation of a task resource 
request to further allocate the task of a few VMs to the 
maximum degree; and 

(3) Workload_Consolidation (proposed method): the task 
is averaged and allocated to the different VMs of different 
servers in proper order. 

 
4.1 Deployment of experimental environment 
Two Daylight A840-G10 servers are used for the service 
platform (CPU: AMD 6376, 16 core 2.3 GHz × 4; memory: 
256 G and Gigabit LAN; disk array: Daylight DS800-G25 

and 41.6 TB storage capacities). All server nodes are 
connected by gigabit optical fiber exchangers. 

The software environment is deployed by two servers 
using Xen virtualization platform. Forty VMs are initialized 
(Table 1): 

The Red Linux 5.0 operation system and Nigix 
application service program are installed into the VMs, and a 
distributed website (JDK1.6 edition) is established. 

The CPU-bound jobs are calculated through JMeter 
simulation. An analog pressure workload is launched to test 
the VM workload and collect data. The pressure workload, 
which is generated by the client end, allows the VMs with 
Nigix to operate with full workload. 

 

 
4.2 Analysis of experimental results 

 
First, the validity of the proposed basic workload evaluation 
strategy is evaluated. The mean square error (MSE) is used 
as an evaluation index of performance prediction: 
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where ˆty  is the predicted workload; ty  is the actual 
workload; and jl  is the workload phase (total number of 
predictions). 

 
4.2.1 Workload prediction analysis 
In this experiment, 20 low-workload VMs and 20 high-
workload VMs are used to evaluate workload prediction. 
The length of the workload phase is 250. The workload 
expectations of the low-workload server and the high-
workload server are shown in Fig. 3 and Fig. 4, and the MSE 
values are 0.122 and 0.019, respectively. According to 
experimental results, the MSE of the prediction error is 
controlled in the acceptable range and reflects the validity of 
the established model. In addition, the MSE is increased 
gradually with the continuous growth of jl , which indicates 
that appropriate workload phases increases prediction 
accuracy. When the workload is significantly changed, the 
prediction accuracy is lowered to some extent, but no 
influence is established for workload consolidation. 

 

 
Fig. 3. Actual and predicted workload expectations of low-workload 
servers 

Table 1. Deployment of software environment 
Xen VM CPU Core Menmory 
5.0 version 40 1 2 2G 
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Fig. 4. Actual and predicted workload expectations of high-workload 
servers 

 
 

4.2.2 Reliability analysis of VMs in workload conditions 
In this experiment, 20 low-workload VMs and 20 high-
workload VMs are used to evaluate VM reliability. The 
experimental results are shown in Fig. 5. When the VM 
workload is lower than that of the low-workload VMs, no 
accumulation errors are established in terms of observation 
time. In addition, VM reliability is nearly 100%. In high-
workload conditions, the accumulation probability of VM 
error logs in the entire cloud platform is lowest 
(approximately 38%) in terms of observation time. The 
experimental results reflect that the VM fault is related to the 
increase of cloud computing system workload. 

 

 
Fig. 5. Reliability of high-workload and low-workload VMs 

 
4.2.3 Reliability analysis of the fault tolerance method 
based on workload consolidation 
The thresholds of server workloads are set to 0.9, 0.8 and 0.7. 
Then, the VM workloads are consolidated and the VM fault 
tolerance time is optimized, as depicted by Theorem 6. The 
experimental results are shown in Fig. 6. The reliability of 
VM is increased by workload consolidation. Accordingly, 
VM reliability is negatively correlated with the server 
workload threshold. Therefore, the fault tolerance method 
based on workload consolidation can increase VM reliability. 

 
4.2.4 Comparative analysis of fault tolerance method 
based on workload consolidation 
The reliability of workload expectation threshold of different 
servers was previously verified. In this section, the Random, 
Max, and Workload_ Consolidation methods are compared 

in terms of VM reliability and VM task completion rate. The 
number of VMs, quantities of required jobs, and workload 
phases are shown in Table 2. 

 

 
Fig. 6. Reliability of VMs based on workload consolidation 

 

 
 
The reliability of VMs in workload phases is analyzed 

using the above three methods (Table 3). A relatively long 
running time of loaded VMs results in a relatively low 
reliability. At workload phase 250, the accumulation error 
probabilities of Workload_Consolidation, Random, and Max, 
are 82.5%, 62.5%, and 35.5%, respectively. Therefore, VM 
reliability is improved by the proposed workload 
consolidation algorithm, the rates of which are 20% and 
47% higher than those by the Radom and Max methods, 
respectively. 

The task completion rates of the three methods in the 
regulated workload phase are shown in Fig. 7. A comparison 
of task completion rates for different job quantities 
( {40,80,160,320}r = ) in workload phase jl =100 is shown in 
Fig. 7(a), and the task completion rates in workload phase 
jl ={150, 200, 250} are shown in Fig. 7(b), Fig. 7(c), and 

Fig. 7(d). As shown by Fig. 7, Workload_Consolidation 
obtained a higher task completion rate than the two other 
methods. At jl =250 and {160,320}r = , the task completion 
rates of Workload_Consolidation is 15% and 30% higher 
than that of Radom and 22% and 30% higher than that of 
Max. 
 

 

Table 2. Node specifications, requested jobs, workload 
phases 

i 1S ( ... )kvm vm  { , 1... }q q rτ =  Workload phase ( )jl  

1S {20}=  {40,80,160,320}r =  {100,150,200,250} 

2S {20}=  {40,80,160,320}r =  {100,150,200,250} 

Table 3. Reliability of VMs in the three methods 

phase           method   Workload  
Consolidation Random Max 

Reliability(100) 100% 100% 100% 

Reliability(150) 100% 100% 92.6% 

Reliability(200) 100% 89.5% 73.4% 

Reliability(250) 82.5% 62.5% 35.5% 
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(a)                                                                                   (b) 
 

               
(c)                                                                                   (d) 

Fig. 7.  Comparison of task completion rates 
 

4.2.5 Validity of fault tolerance method 
This experiment is conducted to verify the validity fault 
tolerance method based on the workload consolidation 
model, and ultimately, to improve service capability during 
system operations. In the experiment, JMeter simulates 
workloads to test the job response time of the VM platform 
in high-workload and low-workload states by using the fault 
tolerance method based on workload consolidation. As 
shown by Fig. 8, the job response time in low-workload 
conditions is approximately 10 s, then increases to 
approximately 15 s in high-workload conditions. At 
workload phases 25 and 40, the job response times are 
increased, which imply a system slowdown. This 
phenomenon demonstrates that the VM system consumes 
excessive resources for the fault tolerance mechanism in 
continuous running state, and issues are further aggravated 
by the continuous deterioration of overall system 
performance. The upper limit of server workload expectation 
is set to 0.8 throughout the fault tolerance. At workload 
phase 25, fault frequency is reduced and job response time is 
shortened, thus increasing system service capability. 

In this experiment, the prediction accuracy of the VM 
workload and the reliability of VMs based on the workload 
consolidation model have been verified. Three methods for 
resource request allocation are compared. The experimental 
results have clearly demonstrated that 
Workload_Consolidation not only improves the reliability 
and service capability of the VM platform system, it also 
reduces the fault tolerance frequency of the VM platform 
with relatively low system cost. The proposed method can 
very well protect the service capability of the VM platform 
system. 

 

 
Fig. 8. Job response time 
 
5. Conclusions 

 
The VMs in cloud platforms experience overload over time 
and encounter fault tolerance. To protect the reliability of 
VMs, a fault tolerance method based on the workload 
consolidation model of VMs in Xen cloud platform was 
proposed. The method was used to increase VM reliability in 
cloud platforms and improve the resource efficiency and 
service capability of VMs. The following conclusions could 
be drawn: 
 

 (1) Workload consolidation in cloud platforms can well 
optimize the reliability and task processing capability of 
VMs. The higher the VM workload is, the lower the 
reliability of VMs and the longer the task processing time 
will be. Therefore, VMs workload can change the reliability 
and task processing capability of VMs in cloud platforms. 
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(2) A VM workload consolidation model is established 
based on the relationships of VM workload and VM 
reliability and task processing capability. The model can 
solve the reliability problems of cloud platforms caused by 
VM workload and accurately monitor resources. Workload 
consolidation and allocation prevent the overuse of VMs in 
cloud platforms. 

(3) The fault tolerance method based on the VM 
workload consolidation model reduces fault tolerance 
frequency in cloud platforms, optimizes fault tolerance time, 
and shortens job response time, thus further increasing the 
reliability and task completion rate of VM platforms. 

 
The proposed method performs fault tolerance on the 

basis of the workload consolidation of VMs in cloud 
platforms. The method can be applied to dynamic 
environments such as VMs in cloud platforms, and it can 

improve the overall performance of cloud platforms. 
Consequently, the method can provide convenient and 
accurate technological support to the fault tolerance of VMs. 
However, the network I/O resource sharing of VMs is 
neglected when VM workloads are measured. Thus, 
studying this gap may increase the applicability of fault 
tolerance to large-sized network communication VMs. 
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