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Abstract 
 

Modal strain energy (MSE) method is an efficient approximation approach for kinetics parameter calculation of 
constrained viscoelastic structures. MSE fails to determine the precise dynamic behavior of viscoelastic structures when 
the stiffness matrix is a complex one. To address this issue, this study proposes a new modified MSE method to calculate 
the loss factor and natural frequency of a constrained viscoelastic structure on the basis of the correlation analysis of the 
current modal strain method. The modifying factor changed with the amplitude of the modal order loss factor. A 
prototype system with four parameters, which was equivalent to a viscoelastic sandwich beam or plate, was used to 
analyze the error between the new modified method and current methods. The proposed method was applied to a 
viscoelastic suspension. Results show that the proposed method obtains minimum relative errors of 1.2% and 2.3% for 
structural loss factor and natural frequency as compared with existing methods. This study provides a certain reference 
for the performance analysis, structural design, and improvement of constrained viscoelastic structures. 
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1. Introduction 
 
Damping reduction has been widely used as a vibration 
control technology in various fields, such as military, 
agriculture, aviation, and aerospace. This technology fully 
utilizes the principle of damping dissipation energy and 
enhances the kinetics stability of the mechanical system [1]. 
A constrained viscoelastic structure is composed of lower 
and upper layers made of elastic material (such as steel and 
aluminum) with high strength and the middle layer made of 
viscoelastic material (such as rubber and plastic). This 
structure can increase loss factor and avoid strength–
stiffness loss, thereby leading to efficient vibration damping 
effect and load function [2]. 

The vibration damping research on viscoelastic 
structures involves damping material preparation and 
damping parameter test kinetics modeling of the composite 
structure. Kinetics modeling, including loss factor and 
nature frequency, is a key issue [3]. In recent years, many 
researchers have investigated the kinetics parameters of 
damping structures [4-8]. However, viscoelastic dynamic 
performance is difficult to precisely predict owing to the 
complex stiffness matrix of viscoelastic structures. 

Modal strain energy (MSE) method has been widely 
applied in many engineering fields to address the above-
mentioned problem. In this study, a modified MSE method 
based on previous modifying strategies and basic MSE is 
proposed by involving a changing factor that varies with loss 

factor to precisely evaluate viscoelastic dynamic 
performance. 

Based on the analysis above, a problem using the 
modified MSE method is examined. The proposed method is 
applied to an engineering case to validate its accuracy. 

 
 

2. State of the art  
 
MSE is widely used in viscoelastic engineering because of 
its simple form, relative precision, and less calculation cost 
compared with traditional methods [9, 10]. The structural 
loss factor in MSE can be obtained through the ratio of 
material loss factor to strain energy. Subsequently, complex 
stiffness is acquired without calculating complex 
eigenvalues. However, the calculation error in MSE 
increases with the increase in viscous component, thereby 
negatively affecting the structural loss factor [10]. 

Recently, considerable literature reports the development 
of various related methods, from theoretical analysis to finite 
element method (FEM) verification, several reliable 
conclusions on damping loss factor and natural frequency 
have been provided [11]. Wang [12] adopted a complex 
eigenvalue method to solve the motion equation with 
multiple eigenvalues and eigenvectors. This method is 
extremely complicated and lacks the characteristics of 
kinetics stress and strain needed for a constrained 
viscoelastic structure. Jaber [13] first proposed the 
theoretical method for solving natural frequency and loss 
factor of complex laminated beams under various constrain 
conditions. This method employs five hypotheses that 
depend on the application objects. Alfouneh et al. [14-16] 
established the super element method for complex laminated 
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beams and used complex modulus to describe viscoelastic 
layer. FEM has also been adopted to calculate natural 
frequency and modal loss factor. Copetti [17-19] utilized the 
advantages of FEM and system perturbation method to solve 
the damping characteristic of viscoelastic structures through 
ASKA software. Ren et al. [20] used complex modulus to 
describe the frequency correlation of a laminated 
viscoelastic material and proposed an iterative method of 
MSE and eigenvalue to solve the dynamic parameters of 
viscoelastic laminated structures. 

The aforementioned proposed methods present difficulty 
in dealing with large viscoelastic structures associated with 
obvious errors. The precision of MSE has been improved 
using modifying strategies to meet the engineering 
requirement [21, 22]. Lv et al. [23] used absolute value 
method of strain energy (AVMSE) to analyze the damping 
characteristics of structures. In this method, the modulus of 
viscoelastic material is replaced by the absolute modulus. 
Structural loss factor is accurately approximated when large 
viscoelastic proportion in the complex structure is 
considered. Reference [24] improved AVMSE and proposed 
a new MSE method (RMSE). This method needs the strain 
energy of viscoelastic material to multiply a corrected factor. 
The comparison showed that RMSE improves accuracy of 
prediction for the loss factor of viscoelastic material. 

Although AVMSE and RMSE are modified MSE 
methods, their modal correction factors of different orders 
for viscoelastic material are the same and may cause 
excessive or insufficient corrections [25]. Considering that 
different order modals possess significantly different loss 
factors for viscoelastic material, this study introduces a new 
correction factor that changes with the loss factor amplitude 
and proposes a new method called ACMSE. 

The remainder of the study is organized as follows. 
Section 3 proposes ACMSE by analyzing the inner 
connection between RMSE and AVMSE. Subsequently, 
modal loss factor and natural frequency are derived using 
ACMSE. Section 4 analyzes the error distribution on a four-
parameter viscoelastic model to validate the effectiveness of 
ACMSE. Section 5 conducts an engineering application of 
ACMSE on a viscoelastic suspension to validate the 
feasibility of ACMSE. Section 6 elaborates the conclusions 
of the study. 
 
 
3. Methodology  
 
3.1 Constrained viscoelastic structure  
A complex stiffness matrix is applied on the constrained 
viscoelastic structure shown in Fig. 1; the motion equation is 
[25]: 

 
Fig. 1. Constrained viscoelastic structure 
 

   M
!!X + (KR + jKVI )X = 0         (1) 

 

R eR VRK K K= +          (2) 

 
where RK  and VIK are the real and image parts of the 
complex stiffness matrix, respectively, eRK is the stiffness 
matrix outside the viscoelastic material, VRK is the stiffness 
matrix’s real part of the viscoelastic material, M is the mass 
matrix, X is the displacement vector, j is the imaginary 
unit. 

If the constrained viscoelastic structure only contains a 
type of viscoelastic material and the loss factor of 
viscoelastic material is Vβ , then the following relation can 
be yield: 

 

VI V VRK Kβ=          (3) 
 
The solution form of Eq. (1) is: 
 

rj t
rX e ω∗∗=Φ  (4) 

 
Where r

∗Φ and rω
∗ are the complex eigenvector and 

complex circle frequency of the -thi order, respectively. 
According to the analysis of Rao [8]: 
 
2 2 2
r r r rjω ω η ω∗ = +          (5) 

 
Where rω is the real part of rω

∗ , rη is the modal loss factor of 
the -thi order. 

When the Rayleigh quotient and complex circle frequency 
are calculated, the following equation is obtained [8]:  

 
( )T

T r eR VR VI r
r T

r r

K K jK
M

ω
∗ ∗

∗
∗ ∗

Φ + + Φ
=

Φ Φ
     (6)  

 
3.2  Brief recall of MSE methods  
 
3.2.1 MSE 
In MSE, the real eigenvector rΦ  approximately replaces the 

complex eigenvector r
∗Φ , the approximate complex circle 

frequency 2
r MSEω∗

 of the -thi  order is: 
 

2 ( )T T
r eR VR r r V VR r

r MSE T T
r r r r

K K Kj
M M

β
ω∗ Φ + Φ Φ Φ

= +
Φ Φ Φ Φ

    (7) 

 
When the real parts of Eqs. (5) and (7) are compared and 

introduced into Eqs. (2) and (3), the approximate modal loss 
factor of the -thi order is [25]: 

 

( )

T
r VR r

rMSE V T
r VR eR r

K
K K

η β
Φ Φ

=
Φ + Φ

     (8) 

 
3.2.2 AVMSE 
In AVMSE, the structural complex eigenvector is replaced 
by the eigenvector calculated by the real part RK  of 
structural stiffness matrix in Eq. (4) without considering the 
lag influence of viscoelasticity on structural mode shape. 
The error increases along with the increase of the image 
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stiffness in the structural matrix. The influence of image 
stiffness is considered and modified by taking its absolute 
value in AVMSE. Real mode rΦ is obtained by modified 
stiffness matrix Kα and approximately replaces composite 

structure mode r
∗Φ  [26].  

 
2 2

1 1
1 1

j j

NE NVE

R j eR VR j
j j

K K K Kα β β
= =

= + = + +∑ ∑        (9) 

 
where NE is the element number, jβ is the material loss 
factor of jth element, NVE is the viscoelastic element 
number, 

jR
K is the stiffness matrix of the -thj element, and 

jVRK is the real part of  stiffness matrix of the -thj element. 

The corresponding eigenvalue problem in this method is: 
 

( ) 0r rM Kαω− + Φ =      (10) 

 
If rΦ approximately replaces complex eigenvector 

r
∗Φ and only one type of damping material is present in the 

structure, then the approximate circle frequency of 
the -thr order in AVMSE is: 

 
2

2

2

( 1 )

1
                  

T
r eR V VR r

r AVMSE T
r r

T
r V V VR r

T
r r

K K
M

K
j

M

∗ Φ + + Φ
= +

Φ Φ

Φ + Φ

Φ Φ

β
ω

β β
     (11) 

 
The approximate mode loss factor r AVMSEη of the 
-thr order is: 
 

2

2

1

( 1 )

T
r V VR r

r AVMSE V T
r V VR eR r

K

K K

β
η β

β

Φ + Φ
=

Φ + + Φ
   (12) 

 
3.2.3 RMSE 
In AVMSE, the calculation of modal loss factor is modified 
by stiffness matrix and eigenvector and it may cause 
excessive modification. Rongong [24] proposed a modified 
method in which Eq. (12) is divided by a modifying factor 

21 Vβ+ and the approximate mode loss factor rRMSEη of 
the -thr order is: 
 

2( 1 )

T
r VR r

r RMSE V T
r V VR eR r

K
K K

η β
β

Φ Φ
=

Φ + + Φ
  (13) 

 
The MSE of viscoelastic material cannot be obtained 

directly in the finite element analysis in accordance with Eq. 
(13). rRMSEη can be expressed as: 
 

2

1
1 1 1( )

1

r RMSE

RMSE
V r AVMSE V

RMSE V

η
α

β η β

α β

⎧ =⎪
⎪ + −
⎨
⎪
⎪ = +⎩

   (14) 

 
where RMSEα is the modifying factor. 
Considering that frequency square is proportional to 

stored energy [12], the approximate circle 
frequency rRMSEω of the -thr order is:  

 

( )
2( 1 )

T
r VR eR r

rRMSE r AVMSE T
r V VR eR r

K K

K K
ω λ

β

Φ + Φ
=

Φ + + Φ
     (15) 

 
Eq. 15 can be rewritten as: 
 

( )1/ 1V r AVMSE RMSE
rRMSE r AVMSE

V

β η α
ω λ

β

+ −
=       (16) 

 
3.3 ACMSE  
The modifying factors in AVMSE and RMSE are the same 
for the viscoelastic composite structure. However, different 
loss factors theoretically exist for different modal orders, 
thereby improving the calculation accuracy. Thus, a new 
modifying factor is proposed in this study on the basis of 

rRMSEα in RMSE and 0 r Vη β≤ ≤ . 
 

( )221 4

1

r ACMSE V rRMSE V

rRMSE
r

V

α β η β

η
µ

β

⎧ = + − +⎪⎪
⎨

= −⎪
⎪⎩

   (17) 

 
Accordingly, 0 1rµ≤ ≤ . 
The approximate modal loss factor r ACMSEη of the 
-thr order in ACMSE is: 
 

1
1 1 1( )

r ACMSE

r ACMSE
V r AVMSE V

η
α

β η β

=
+ −

  (18) 

 
Similar to the process in RMSE, the approximate circle 

frequency r ACMSEω of the -thr order in ACMSE is: 
 

( )1/ 1V r AVMSE r ACMSE
r ACMSE r AVMSE

V

β η α
ω λ

β

+ −
=  (19) 

 
4 Result analysis and discussion 
 
4.1 Prototype system with four parameters 
The errors of four methods, i.e. MSE, AVMSE, RMSE and 
ACMSE are analyzed using a prototype system with four 
parameters, which is equivalent to a viscoelastic sandwich 
beam (plate), to validate the rationality and accuracy of 
ACMSE. 

Torvik et al. [26]. proposed a prototype system with four 
parameters (Fig. 2) to analyze MSE.  

The complex stiffness of the system can be obtained by 
the viscoelastic-elastic principle as follows: 

 

( ) 3
1 2 2

1
1 1

K k
k k j kβ

∗ = +
+ +

   (20) 

 



 Bao Sun, Jun Wang, Zhan-long Li, Yuan Qin, Shi-zhong Liu and Dick Tomker/ 
Journal of Engineering Science and Technology Review 10 (5) (2017) 174-180 

 

 177 

 
Fig. 2. Prototype system with four parameters 
 

The complex stiffness of the system can be obtained by 
the viscoelastic-elastic principle as follows: 

 

( ) 3
1 2 2

1
1 1

K k
k k j kβ

∗ = +
+ +

   (20) 

 
System loss factor sη can be obtained by the ratio of 

imaginary and real parts of system complex stiffness as 
follows: 

 

( )2 2 2 21 2s
x

x y x yx x y xy
β

η
β

⋅
=

+ + + + + +
  (21) 

 
Where 2 1x k k= , 3 1y k k= , and β is the loss factor of 

the complex stiffness spring. 
From the system homogeneous solution, the natural 

frequency sω is obtained as: 
 

( )Res K Mω ∗=     (22) 

 
Complex stiffness elasticity modulus is replaced by the 

real part in MSE and by the absolute value in AVSME. The 
modifying factor is improved in RMSE on the basis of 
AVMSE, and the structural loss factors and natural circle 
frequency of these MSE methods are obtained as follows: 

 

( )( )

( )

1

1

MSE

MSE

x
y xy x x

z y xy x
x

β
η

ω

⋅⎧ =⎪ + + +⎪
⎨

+ +⎪
=⎪ +⎩

    (23) 

 

( )( )

( )

1

1

AVMSE

AVMSE

x
y xy x x

z y xy x
x

β α
η

α α α

α α
ω

α

⋅ ⋅⎧ =⎪ + + +⎪
⎨

+ +⎪
=⎪ +⎩

     (24) 

 

( )

1
1 1 1

1 1

RMSE

AVMSE

AVMSE
RMSE AVMSE

η
α

β η β

β η α
ω ω

β

⎧ =⎪ ⎛ ⎞⎪ + −⎜ ⎟⎪
⎝ ⎠⎨

⎪ + −⎪ =
⎪⎩

    (25) 

 
Where 1z k M=  and 21α β= + . 

Similar to the modifying factor improvement functions in 
RMSE, modifying factor αʹ varies with the system efficient 
loss factor in ACMSE. The structural loss factor and natural 
circle frequency are inferred as: 

 

( )

1
1 1 1

1 1

ACMSE

AVMSE

AVMSE
ACMSE AVMSE

η
α

β η β

β η α
ω ω

β

⎧ =⎪ ⎛ ⎞⎪ ʹ+ −⎜ ⎟⎪
⎝ ⎠⎨

⎪ ʹ+ −⎪ =
⎪⎩

  (26) 

 
where ( ) 21 1 RMSEα η β βʹ = + − . 
From the above-mentioned inference on structural loss 

factor η  and natural frequency ω in these MSE methods, 
η is found related to stiffness ratio x , y  and β . Natural 
frequency ω presents a function relationship with stiffness 
ratio x , y , complex spring loss factor β , and z , for 
convenience of analysis, z is assumed to be constant and 
negligible [25]. 

 
4.2 Error analysis for loss factor 
The four above-mentioned MSE errors are explored. x , y is 
in the range of 0.01–100 , indicating four-order change in 
stiffness ratio; β is in the range of 0–2, representing the loss 
factors of common viscoelastic material. The relative error 
curves of structural loss factor and natural frequency in 
MSE, AVMSE, RMSE, and ACMSE are shown in Figs. 3 
and 4. 
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Fig. 3. Relative error calculation for various loss factors 
 
 
The following conclusions can be obtained from the 

analysis above. 
When stiffness ratio x , y  is invariable, the errors of 

structural loss factor in the four methods increase with the 
increase in material loss factor. The error in MSE is 
particularly obvious. Thus, the method needs to be 
improved. 

 
Compared with AVMSE and RMSE, ACMSE obtains 

minimum structural loss factor error with a lower bound. 
When β and stiffness ratio 3 1k k , 2 1k k are invariable, the 

structural loss factor error in ACMSE is the minimum. With 
the increase in stiffness ratio, the error stabilizes. 
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Fig. 4. Relative error calculation for natural frequency by various MSE 
 
4.3 Error analysis for natural frequency 
Fig. 4 shows the relative error calculation for natural 
frequency by various MSE methods. 

From the relative error curves for natural frequency by 
various MSE methods, the following conclusions are drawn. 

When stiffness ratio x , y  is invariable, the errors of 
structural loss factor in the four methods increase with the 
increase in material loss factor. The error in MSE is the 
maximum and increases rapidly. 

The natural frequency error in AVMSE is the minimum. 
The error in ACMSE is only slightly larger than that in 
AVMSE whereas smaller than the errors in MSE and 
RMSE. 

When material loss factor β and stiffness ratio are 
invariable and 2 1k k is in a very small area, the errors of the 
four methods increase with 2 1k k . The error in ACMSE is 
larger than that in AVMSE only. With the increase in 2 1k k , 
the errors in these methods decrease and stabilize. 

When material loss factor β and stiffness ratio are 
invariable, the errors in these methods decrease with the 
increase in 3 1k k . The error in AVMSE is the smallest, and 
that of ACMSE is smaller than the errors in MSE and 
RMSE.  
With the increase in 3 1k k , the errors in the four methods 
are very close and stable in general. 

In summary, the proposed ACMSE can more efficiently 
calculate structural loss factor and natural frequency among 
all the compared methods. 

 
4.4 Example verification 
A constrained viscoelastic structure is used to validate 
ACMSE. The structure is mounted on a crawler bulldozer to 
absorb vibration and shock. The structure uses damping 
technology and thus possesses good buffer damping 
performance [27]. 

 

 
Fig. 5. Picture of viscoelastic suspension 
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The loss factor and natural frequency of a viscoelastic 
suspension installed in a bulldozer with 410 horsepower 
(Fig. 5) are calculated using the four MSE methods. The 
precision of ACMSE compared with that of other MSE 
methods is validated using ANSYS software by FEM. 

The mechanical behavior of steel and rubber is simulated 
by 3D element Solid 185. The steel and rubber materials are 
regarded as isotropic. The model and physical parameters 
used in the FEM analysis are shown in Tab. 1.  

 
Table 1. Main geometric and physical parameters of viscoelastic suspension’s rubber pad 

Geometrical parameters of rubber 
mat 

Parameter 
value 

Structural layer 
of  parameter 

Density ρ  
( ) 

Elasticity modulus, shear 
modulus (Pa) 

Poisson’s 
ratio  µ  base diameter D /mm 305 

Restraint Layer 
Damping Layer 
Basement Layer 

7800 
1130 
7800 

2.100 × 1011 
0.896 × 106 
2.100 × 1011 

0.300 
0.499 
0.300 

Total height th /mm 45 
ceiling height uh /mm 10.4 
central height mh /mm 30.6 
Bottom height bh /mm 4.0 
Central support angleθ /( o ) 55 
Total radius of circular arct R /mm 950 
 

The loss factor entity model of the damping structure in 
Fig. 5, FEM, stresses, and strain image under 3 Hz of a 
typical working condition are shown in Figs. 6, 7, 8, and 9, 
respectively.  

The results of loss factor and natural frequency of the 
damping structure analyzed by ANSYS using ACMSE and 
three other MSE methods are shown in Table 2. 

         
Fig. 6. One-fourth symmetric 3D model of viscoelastic suspension                  Fig. 7. One-fourth symmetric 3D FEM model of viscoelastic suspension 
 

            
Fig. 8. Stress contour picture for viscoelastic damping structure at 3 Hz            Fig. 9. Strain contour picture for viscoelastic damping structure at 3 Hz 

 
 
Table 2. Loss factor and natural frequency calculation of  MSE methods 

Modal MSE result AVMSE result RMSE result ACMSE result ANSYS result 
Loss factor 

 
Natural 

frequency 
/Hz 

Loss factor 
 

Natural 
frequency 

/Hz 

Loss factor 
 

Natural 
frequency 

/Hz 

Loss factor 
 

Natural 
frequency 

/Hz 

Loss factor 
 

Natural 
frequency 

/Hz 
1 0.198 267.35 0.274 283.25 0.275 282.21 0.296 283.15 0.298 285.35 
2 0.203 267.83 0.269 283.69 0.279 282.53 0.306 283.35 0.314 285.83 
3 0.221 271.96 0.280 284.36 0.281 282.94 0.324 284.06 0.325 286.46 
4 0.216 273.52 0.291 284.68 0.289 283.31 0.318 284.18 0.319 286.52 
5 0.231 275.76 0.289 285.26 0.294 283.25 0.329 285.23 0.333 291.96 

 
The loss factor error in ACMSE is the smallest compared 

with the errors in ACMSE and MSE. The natural frequency 
errors in the three other MSE methods are smaller than the 
error in MSE, and the error in ACMSE is only smaller than 
that in AVMSE. This conclusion is consistent with the 
further error analysis and proves the rationality and accuracy 
of ACMSE. Therefore, the proposed method can meet the 
requirement of a few engineering designs. 

 
 

5 Conclusions 
 

To evaluate the dynamic behavior of viscoelastic structure 
more precisely, this study analyzed the characteristics and 
relations of MSE, AVMSE, RMSE, and proposed an 
ACMSE with loss factor varies. The following conclusions 
could be drawn.. 

(1) The modifying factor changes with the corresponding 
modal loss factor; thus, the calculation accuracy of ACMSE 
for viscoelastic damping features is better than the 
accuracies of MSE, AVMSE, and RMSE. 

(2) The error analysis shows that the natural frequency 
and modal loss factor errors are 1.2% and 2.3%, respectively, 
for ACMSE. This finding also proves the accuracy of 
ACMSE. 

(3) ACMSE can be applied not only to the kinetics 
analysis of viscoelastic constrained damping structure with 
two elastic layers but also to complex constrained damping 
structures with multiple layers. 

This research proposed a new MSE method namely 
ACMSE for analyzing dynamic response of multiple-layer 
constrained viscoealastic damping structure. On the other 
hand, it provides a certain reference for the performance 
analysis, structural design, and improvement of constrained 
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viscoelastic structures. The material loss factor presents a 
certain non-linear variation for large strain condition. 
Therefore, the future study will comprehensively explore the 
application of MSE into the non-linear kinetics parameter 
analysis of damping structures with multiple constraints. 
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