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Abstract 
 

Distribution network reconfiguration (DNR) continues to be a good option to reduce technical losses in a distribution 
power grid. However, this non-linear combinatorial problem is not easy to assess by exact methods when solving for 
large distribution networks, which requires large computational times. For solving this type of problem, some researchers 
prefer to use metaheuristic techniques due to convergence speed, near-optimal solutions, and simple programming. Some 
literature reviews specialize in topics concerning the optimization of power network reconfiguration and try to cover 
most techniques. Nevertheless, this does not allow detailing properly the use of each technique, which is important to 
identify the trend. The contributions of this paper are three-fold. First, it presents the objective functions and constraints 
used in DNR with the most used metaheuristics. Second, it reviews the most important techniques such as particle swarm 
optimization (PSO), genetic algorithm (GA), simulated annealing (SA), ant colony optimization (ACO), immune 
algorithms (IA), and tabu search (TS). Finally, this paper presents the trend of each technique from 2011 to 2016. This 
paper will be useful for researchers interested in knowing the advances of recent approaches in these metaheuristics 
applied to DNR in order to continue developing new best algorithms and improving solutions for the topic. 
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1 Introduction 
 
Power distribution networks are affected by high power 
losses due to voltage reduction, which allows high currents 
compared with those in transmission systems. This occurs 
because the material resistivity of conductors is opposed to 
the current flow, thereby dissipating energy as heat (i.e., 
power losses). Distribution system operators (DSOs) have 
several alternatives for solving this problem. Some of the 
best options include the use of DG [1–7], capacitor 
placement [7,8], feeder restructuring [8], and network 
reconfiguration [9,10]. Reconfiguration is a good option 
because the network can be optimized with the existing 
switches or by investing money to optimize the network 
topology and thereby reduce power losses [11]. 
 DNR involves a change of network topology through tie 
and sectionalizing switches, which are referred to as 
“normally opened” and “normally closed,” respectively. 
This is a combinatorial non-linear problem, constrained by 
the electrical properties of power system elements. The aim 
of this process is to reduce power losses by identifying the 
best switch combination in a reasonable timeframe. 
However, exact algorithms require a lot of time to find a 
solution, whereas metaheuristics can evaluate different 
combinations with faster convergence. 
 Metaheuristic techniques are inspired in both nature and 
evolutionary processes, emulating particle behavior and the 
process of evolution through simple mathematical models. 
The main difference between metaheuristics and 

conventional methods is the stochastic approach. Many 
researchers are constantly facing new challenges with 
stochastic techniques. Some reviews on both reconfiguration 
and metaheuristics can be found in the scientific literature 
[12–15]. Nonetheless, we could not find a proper survey 
about the most relevant metaheuristic techniques directly 
applied to DNR in recent years. 
 Therefore, the aim of this paper is to present recent 
works that use PSO, GA, SA, ACO, IA, and TS. The most 
used objective functions and constraints for the DNR 
problem are presented. The search was done based on 
Scopus and the ISI Web of Science databases for articles in 
journals and conferences. In addition, the timeframe was 
defined as between 2011 and 2016 for articles in databases. 
 The remainder of this paper is set out as follows. Section 
2 shows the objective functions and constraints used with 
the metaheuristic algorithms. Section 3 presents descriptions 
of the most used metaheuristic techniques and how these 
have been applied for DNR, and shows some statistics on the 
topic. Section 4 includes a discussion of the results and, 
finally, Section 5 presents the conclusions. 

 
 

2 Reconfiguration objectives and constraints 
 
This section presents the objectives and constraints used 
with metaheuristic algorithms for the DNR problem. Table 1 
summarizes a review of the objective functions and 
constraints found in the literature for papers presenting PSO, 
GA, SA, ACO, IA, and TS. It can be seen that the most used 
objective functions with these metaheuristics are power 
losses reduction followed by voltage profile improvement 
and load profile index improvement. Furthermore, the most 
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used equations are (1)–(5). Moreover, the most used 
constraints are power balance, voltage thresholds, branch 
current thresholds, feeding of all loads, and number of 

branches. These constraints are numbered as C1–C5 or 
equations (20)–(24) in Table 1. Constraints C4 and C5 
maintain the radiality of distribution networks. 

 
 
Table 1 Objective Functions and Constraints 

Objective Function (OF) Constraints (C) References (R) 

OF1. Power losses reduction. Equation (1) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 

[9,16–90] 

C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) [91–94] 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 

[95–97] 

OF2. Voltage profile improvement. Equation 
(2) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 

[17,19,28,30–32,36–
38,61,62,65,66,89,98] 

OF3. Load profile index improvement. 
Equations (3)–(5) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 

[9], [17], [19], [33], [61], [65], [73], [90], 
[99] 

OF4. Optimal PMU placement. Equation (6) C4 - Feeding of all loads (23) [92] 

OF5. Total cost of capacitor installation and 
energy losses reduction. Equation (7) 

C5 - Number of branches (24)  
C6 - Minimum PMU’s installed (25) 
C7 - Maximum allowable daily moving step of 

LTC’s (26) 

[100] 

OF6. Voltage sags index reduction. Equations 
(8)–(9) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 

[101], [102] 

OF7. Priority loads maximization. Equation 
(10) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 

[103], [104], [105] 

OF8. Power losses reduction in ship´s power 
systems. Equation (11) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 

[103], [104] 

OF9. Tap changes in transformers reduction. 
Equation (12) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 
C7 - Maximum allowable daily moving step of 

LTC’s (26) 
C8 - Limits for movements of LTC’s taps (27) 

[53], [99] 

OF10. Capacitor switch operations reduction. 
Equation (13) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 
C9 - Number of daily switching operations for 

capacitor banks (28) 

[53] 

OF11. Multiobjective energy losses, grid 
upgrade, transmission power, and reliability 
cost reduction. Equations (14)–(18) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 

[106] 

OF11A. Energy losses minimization. Equation 
(15) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 

[65], [83], [99], [107], [108] 

OF12. Switching operations minimization. 
Equation (19) 

C1 - Power balance (20) 
C2 - Voltage node thresholds (21) 
C3 - Branch current threshold (22) 
C4 - Feeding of all loads (23) 
C5 - Number of branches (24) 

[59], [90], [107] 
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2.1 Objective functions (OF) 
Several equations have been used for DNR. Next, each of 
the equations used with the metaheuristic algorithms 
presented in Table 1 is described according to its use in the 
literature. Here, the term OF1 means Objective Function 1, 
OF2 means Objective Function 2, and so on, representing 
the terms defined in Table 1. 
 
2.1.1 Power losses (OF1) 
The equation for minimization of technical power losses is 
(1), where nbr is the total number of branches, Rl is the 
resistance of the branch l, and Il is the current in branch l: 
 

  
Min Ploss = Rl Il

2

l=1

nbr

∑ . (1) 

 
2.1.2 Voltage profile (OF2) 
The equation for voltage profile improvement is (2), where 
∆VD represents the voltage variation, V1 the voltage level of 
the system (voltage base), and Vi the voltage in node i: 
 

  
Min ΔVD = Max

V1 −Vi

V1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∀i =1,2..., N .                              (2) 

 
2.1.3 Load profile index improvement (OF3) 
The equations for load profile index are in (3)–(5), where 
LUI is referred to as line usage index, Si the apparent power 
flowing in branch i, Si

max is the apparent power threshold for 
branch i, Snbr is the apparent power in branch n, Snbr

max is the 
apparent power threshold for the branch n, X is the LUI 
vector, and LBI is the load-balancing index: 
 

  
LUI = Si

Si
max ,                                                                        (3) 

 

  
X =

Si

Si
max

...
Snbr

Snbr
max

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,                                                              

(4) 

 

  Min LBI = Var( X ) .                                                            (5) 
 
 
2.1.4 Optimal PMU placement (OF4) 
The equation for optimal placement of phasor measurement 
units (PMUs) is presented in (6), where ωi is the cost of 
PMU installation at bus i and xi is a binary decision variable 
considering 1 if a PMU is installed at node i and 0 
otherwise: 
 

  
Min (ωixi )

i=1

n

∑ .                                                                     (6) 

 
2.1.5 Total cost of capacitor placement and energy 

losses reduction (OF5) 
The equation for reducing the total cost of capacitor 
placement and energy losses is described in (7), where Kp is 
the cost of energy, Eloss the daily energy losses, Ki the 
installation cost of capacitor, Kb the purchase cost of 
capacitor, y the number of years to be evaluated, n the nth 
capacitor, and N the total number of capacitors installed: 
 

  
min y×365× K p × Eloss +

Ki+Kb
10( )

n=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥ .                                (7) 

 
2.1.6 Voltage sags index reduction (OF6) 
Equations (8) and (9) present the reduction of the sags index 
SARFIx, which represents the average number of root mean 
square (rms) variation measurement events that occurred 
over the assessment period per customer served where the 
specified disturbances are those with a magnitude less than x 
for sags or a magnitude greater than x for swells, where x is 
the rms voltage threshold, Ni is the number of customers 
experiencing the disturbances, NT is the total number of 
customers served from the section of the system to be 
assessed, festi is the voltage sags number at bus i, and frefi is 
the voltage sags reference value at bus i: 
 

 

SARFIx =
Ni∑
NT∑

,                                                                (8) 

 

  
Min( fest−i − fref −i )∀i .                                                          (9) 

 
2.1.7 Priority loads maximization (OF7) 
Equation (10) maximizes main loads to be served in a ship’s 
power system, where N is the total number of loads and pi is 
the priority weighting factor associated with a load Li at bus 
i: 

 

  
Max ( pi Li )

i=1

N

∑ .                                                                  (10) 

 
2.1.8 Power losses reduction in a ship´s power system 

reduction (OF8) 
The equation for reducing the power losses in ship´s systems 
is (11), where PGEN and PLOAD represent active power 
generated and active power consumed by loads, respectively. 
 

  Min(PGEN − PLOAD ) .                                                           (11) 
 
2.1.9 Tap changes in transformer reduction (OF9) 
Equation (12) minimizes the total number of tap changes in 
a load transformer changer (LTC) element, where AT is the 
total operation number of all LTCs in the system, NP the 
total number of transformers, NT is the number of time 
segments, NL is the number of load curve segments, AT·n is 
the total operation number of LTC n on the concerned day, 
Sn·t is the position of the nth LTC corresponding to time 
segment t, and Sn·(t-1) corresponds to the last curve segment 
of the previous day: 
 

  
min AT = AT ⋅n

n=1

NP

∑ = Sn⋅t − Sn⋅ t−1( )
t=1

NL

∑
n=1

NT

∑ .
                    (12) 

 
2.1.10 Capacitor switch operations reduction (OF10) 
In (13), the capacitor switch operations are diminished. 
Here, AC is the total operation number of all capacitor bank 
switches, NC is the total capacitor banks, and Cm·t is the 
status of capacitor bank switch m corresponding to load 
curve segment t. When a capacitor bank is on, Cm·t is 1 and 0 
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otherwise. Cm·(t-1) corresponds to the previous day’s state of 
the capacitor bank m: 

 

  
min AC = AC⋅m

m=1

NC

∑ = Cm⋅t −Cm⋅ t−1( )
t=1

NL

∑
n=1

NC

∑ .                             (13) 

 
2.1.11 Multiobjective energy losses, grid update, 

transmission power, and reliability cost reduction 
(OF11) 

Equation (14) is based on the network upgrading cost in 
year, which is represented as Cupg(y), where y is the planning 
years, ncl is the network candidate lines, UC(xncl(y)) is the 
installation cost of various types of candidate lines (CT) per 
kilometer, Lncl is the length of line ncl, Cf

ncl is the fixed cost 
of feeder ncl, and zncl(y) is a binary decision variable that is 
equal to 1 if feeder ncl is reinforced in year y and 0 
otherwise: 
 

  
Cupg ( y) = UC xncl

( y)( )× Lncl +Cncl

f × zncl
( y){ }

ncl

∑ .               (14) 

 
 Equation (15) (OF11A) represents the total cost of 
energy losses in year y, which is CLoss(y), where T is the time 
periods and nf represents the network feeders. The variable 
znf(T,y) is binary-based and is equal to 1 if feeder nf is 
selected in the time period T of year y and 0 otherwise, 
pnfloss(T,y) are the active power losses of feeder nf in the 
time period T of year y, t(T,y) is the duration of time period 
T of year y, and LC(T,y) is the loss cost in T of y: 

 

  

C Loss( y) = zn f
(T , y)× pn f

loss(T , y)× t(T , y)× LC(T , y)⎡
⎣

⎤
⎦

n f

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪T
∑ (15) 

 
 In equation (16), Ctr(y) relates to the total cost of 
imported energy from the transmission grid in year y. 
EC(T,y) is the cost of imported energy from the transmission 
grid in the time period T of year y and ptr(T,y) is the 
imported power from the transmission grid in T in year y: 

 

  
Ctr ( y) = EC(T , y)× t(T , y)× ptr (T , y){ }

T
∑ .                     (16) 

 
 Equation (17) illustrates the total network reliability cost 
CR(y), where λ(∂nf(y)) is the failure rate of line CT per 
kilometer per year, the number 8,760 is related to the total 
hours in a year, CCLF is the cost of curtailed load per fault, 
Lnf is the length of line nf, pfnf(T,y) is the power flow of 
feeder nf in T and y, and rp(∂nf(y)) is the average duration of 
fault on line CT. HEC is the energy cost per hour of fault, Ʌcl 
is the set of all candidate lines, Ʌf is the set of all network 
feeders, ϒ is the set of time periods, and Ψ is the set of 
planning years: 
 

  

C R ( y) = λ ∂n f
y( )( )× t T , y( )

8760

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟×CCLF

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟× Ln f × pfn f

T , y( )× zn f
T , y( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥T

∑
n f

∑

+ rp ∂n f
y( )( )×λ ∂n f

y( )( )× t T , y( )
8760

×HEC
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟× Ln f × pfn f

T , y( )× zn f
T , y( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥T

∑
n f

∑

∀ncl ∈ Λcl ,nf ∈ Λ f ,T ∈ ϒ, y ∈ψ

 (17) 

 
Equation (18) minimizes equations (14)–(17), where i is 

the discount rate: 

 

  

min 1

1+ i( ) y
×

y
∑ Cupg y( )+C Loss y( )+Ctr y( )+C R y( )⎡

⎣
⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (18) 

 
2.1.12 Switching operations minimization (OF12) 
Equation (19) minimizes the total cost due to switching 
operations in DNR, where SWc is the switching cost owing 
to the costs of dispatching technicians in the case of non-
automated systems, maintenance requirements, and 
shortened lifetime of switches. NSW is the total number of 
switches installed in the distribution system, xi is the status 
of the switch i after reconfiguration, and xio is the status of 
the switch i before reconfiguration, being equal to 1 for a 
closed switch and 0 for open: 

 

  
min SWcos t = SWc × xi − xio

i=1

NSW

∑ .                   (19) 

2.2 Constraints used for reconfiguration 
Several constraints have been included in the DNR. Next, 
we present the most used constraints functions with 
metaheuristic algorithms. Here, the term C1 means 
Constraint 1, C2 means Constraint 2, and so on, representing 
the terms defined in Table 1. 
 
2.2.1 Power balance (C1) 
Power balance can be represented as in (20), where the term 
g(x) represents the power flow, which must be equal to zero: 
 

  g(x) = 0 .                                                                           (20) 
 
2.2.2 Voltage limits (C2) 
The voltage limits of all nodes of the power network can be 
represented as constraints defined in (21). The term Vimin is 
the minimum value of voltage at node i, the term Vimax is the 
maximum value of voltage at node i, and the term Vi is the 
voltage at node i: 
 

  Vimin ≤Vi ≤Vimax .                                                                (21) 
 

2.2.3 Branch current threshold (C3) 
The current of each line Il is restricted by the maximum 
current of each element Ilmax, where Il is the current flowing 
at the lth branch and Ilmax is the maximum value of current in 
branch k: 
 

  Il ≤ Il max                                                                             (22) 
 

2.2.4 Feeding of all loads (C4) 
The constraint defined in (23) ensures that the network is 
radial and all loads are connected, where A is the adjacent 
nodes matrix. Thus, when det(A) is equal to 0, the system is 
not fed completely and when det(A) is equal to 1 or −1, all 
buses are fed: 
 

  det(A) =±1                                                                        (23) 
 
2.2.5 Maximum number of branches (C5) 
For radial networks, the number of branches can be obtained 
as a constraint as shown in (24), where nbr is the number of 
branches and N is the total number of nodes: 
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  nbr = N −1                                                                        (24) 
 
2.2.6 Minimum PMUs installed (C6) 
The minimum number of PMUs to install in the power 
system is calculated according to (24), where f(x) refers to 
the minimum quantity of units to install: 
 

  f (x) ≥1                                                                             (25) 
 
2.2.7 Maximum allowable daily moving step of LTCs 

(C7) 
The maximum allowable daily moving step of LTCs can be 
restricted by using (26), where AT·n is the number of steps of 
the LTC n, AT·n·Max represents the maximum allowable daily 
moving step of the LTC n with n as the number of the LTC, 
and NT is the maximum number of transformers: 
 

  AT ⋅n ≤ AT ⋅n⋅Max ,n∈ (1, NT )
                                                  (26) 

 
2.2.8 Limits for movements of LTCs (C8) 
The maximum number of tap changes of each LTC can be 
restricted by using (27), where Snt represents the current 
position of the LTC, Sn·Max is the highest position of the LTC 
n with n as the number of the LTC, and NT is the maximum 
number of transformers: 
 

  
1≤ Sn⋅t ≤ Sn⋅Max ,n∈ 1, NT( )                                                 

(27) 

 
2.2.9 Number of daily switching operations for 

capacitor banks (C9) 
The number of daily switching operations for the capacitor 
banks can be restricted by using (28), where AC·m represents 
the number of switching operations of the capacitor bank 
switch m, AC·m·Max is the maximum allowable daily switching 
operation number for capacitor banks, m is the capacitor 
bank switch, and NC the maximum number of capacitor bank 
switches: 
 

  AC⋅m ≤ AC⋅m⋅Max ,m∈ (1~NC )
                                              (28) 

 
 
3 Nature/Evolutionary-inspired algorithms applied to 

DNR 
 
Figure 1 shows how the selected metaheuristic algorithms 
(PSO, GA, SA, ACO, IA, and TS) have been used for DNR 
from 2011 to 2016. The search process was developed in 
SCOPUS and the ISI Web of Knowledge and considered 
articles in journals, conferences, and proceedings. Moreover, 
the keywords used in the searching process were “feeder 
network reconfiguration,” “distribution network 
reconfiguration,” and the name of each algorithm. 

Clearly, GA is the most used in the topic as it has been 
implemented in many topics and its proficiency has been 
tested for many years. PSO presents a similar behavior 
considering its maturity in the topic. On the other hand, 
more recent algorithms are being developed that promise to 
be good options for future contributions. In addition, there 
are many more articles in the ISI database than in SCOPUS; 
however, there are more conference papers registered at 
SCOPUS than proceedings registered at ISI. The number of 
results is 438, which can be the same papers, but found in 

each of the two databases. Furthermore, a same work can be 
found as a conference and article paper as some events pass 
their best papers through to publication in an indexed 
journal. 
 

 
Fig. 1. Number of documents for each algorithm considering SCOPUS 
and ISI databases from 2011 to 2016 

 
 
Figure 2 presents a detailed scenario of each 

metaheuristic algorithm used for DNR per year. From this 
figure, it can be perceived that in most cases, GA has the 
bigger contribution followed by PSO. Finally, it is important 
for academics to consider that the implementation of these 
techniques is constantly growing due to the need to handle 
bigger combinatorial problems in real life that cannot be 
achieved by regular and exact methodologies. 

 
Fig. 2. Detailed number of documents for each algorithm considering 
SCOPUS and ISI databases  

 
 
 The remainder of this section presents a summary of the 
most used techniques and the contributions developed in 
several works, their improvements, and how they have been 
used. 

 
3.1 Particle Swarm Optimization (PSO) 
PSO was developed by PhDs Eberhart and Kennedy in 1995 
[109]. It was initially structured to determine mass behavior; 
however, programmers noted its potential for solving 
optimization problems. PSO allows solving a problem 
through the concept of particles represented by insects, 
birds, and other organisms. 
 Particles usually transport themselves in big groups to 
search for food. In a similar way, PSO emulates this 
behavior as it initializes a population with a number of 
particles that move in a space of solutions for any problem. 
Movement velocity, or the capability to jump from one 
solution to another to get the optima or a very close value, 
depends on the programmer. There are two determining 
factors to the orientation of each particle. The first is own 
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experience, denominated as Lbest, which is the best 
encountered solution by the particle. Second, it is the global 
experience, denominated as Gbest, which is the best solution 
obtained so far by any particle in the population. 
 PSO was first designed for continuous problems, but the 
authors also developed a binary version [110] to solve non-
continuous optimization problems, such as for distribution 
feeder reconfiguration. PSO has been developed using 
different approaches to improve the search time and avoid 
local optima. In [97], an Enhanced Integer Coded Particle 
Swarm Optimization (EICPSO) algorithm was modeled and 
demonstrated a faster speed than the Genetic Algorithm 
(GA), Modified Binary Particle Swarm Optimization 
(MBPSO), and Discrete Particle Swarm Optimization 
(DPSO) for load-balancing and reconfiguration. 
Experimental results were obtained from three scenarios. 
Scenario I was the 33-bus system, where all algorithms 
reached the optimal value. Scenario II was 94 load zones 
from the Taiwan Power Company (TPC) system and 
Scenario III was a modified 188 load zones, also from the 
TPC system. In the last two systems, EICPSO was shown to 
be faster than the other techniques; even in the bigger 
system, it reached the optima when other algorithms could 
not. Similar approaches are developed in [47], [50], and 
[57]. 

Reconfiguration can be used to maximize the injection 
of Distributed Generation (DG) in a medium- or low-voltage 
feeder system. In [111], a method was proposed to introduce 
a proper number of DG units while considering different 
stochastic scenarios for variable wind speed. Feeder 
reconfiguration was presented in three test systems (5-, 19-, 
and 33-bus) while applying a Binary Particle Swarm 
Optimization (BPSO) algorithm. The results showed that 
with volt/var control by shunt capacitor, on-load tap 
changer, voltage regulator, and feeder reconfiguration, DG 
injection can be maximized. Similar works are presented in 
[48] and [49]. 

Other studies were performed by Niknam et al. [30] to 
work out several scenarios, taking into account the 
uncertainty of wind speed, power injection by wind turbines, 
and varying both active and reactive loads. A Weibull–
Gaussian probabilistic distribution function was used to 
identify the scenarios stochastically. The AMPSO (Adaptive 
Modified Particle Swarm Optimization) algorithm was 
implemented for the reconfiguration process. To verify its 
power, evaluations were made with the 33- and 69-bus test 
systems against other algorithms, such as PSO – Shuffled 
Frog Leaping Algorithm (PSO–SFLA), PSO-HBMO, 
Modified SFLA (MSFLA), Honey Bees Mating 
Optimization (HBMO), GA, and others. The results showed 
that the proposed algorithm was the fastest. Parallel 
investigations are offered in [51], [52], and [65]. 

PSO was also implemented for reconfiguration in the 
presence of non-linear loads, which cause harmonic 
distortion. In [112], a methodology is proposed to evaluate 
the influence of non-linear loads in the reconfiguration 
process. Two new algorithms were tested against DPSO to 
recognize convergence velocity and derive accurate 
solutions: the Imperialist Competitive Algorithm (ICA) and 
the SFLA. The outcomes show that both are better than 
DPSO for long- and short-term reconfiguration problems. 
Comparable results are presented in [64] and [98]. 

Navy ship power system reconfiguration is performed in 
[103], where a Small Population Particle Swarm 
Optimization (SPPSO) algorithm is accomplished. A 
methodology is proposed to maximize priority loads and the 

magnitude of loads to be served. A Pareto optimizing front 
was used to determine the optimal solution. SPPSO varies 
itself from original PSO in the reduced population of 
particles and, after a few iterations, particles are regenerated 
in order to avoid local optima. A similar work is presented in 
[104]. 

In [113], a BPSO was worked out to pursue the optimal 
configurations of 33- and 123-bus radial distribution systems 
for maximizing reliability and minimizing active power 
losses. To achieve the fitness function, the authors 
developed a probabilistic reliability model based on cut sets. 
Radiality is considered due to its simplicity in protective 
relay coordination. More multiobjective analyses can be read 
in [53–56] and [106]. 

Tolabi et al. [17] investigated the enhancement of three 
different objective functions: minimizing power losses and 
improving load-balancing and voltage profile. As a 
multiobjective problem, a Fuzzy-ACO algorithm was 
presented and compared with Fuzzy-PSO and Fuzzy-GA. 
The results showed that Fuzzy ACO achieved optimal values 
for the 33-bus test system and the 84-bus TPC system. Other 
investigations concerning PSO are found in [76–79]. 

Nasir et al. used PSO to minimize active power losses 
and voltage profile improvement by implementing the 
process as a multiobjective function [27]. The authors 
evaluated three cases: 1) reconfiguration only; 2) 
reconfiguration with DG allocation and sizing; and 3) the 
same as case 2, but considering buses with the lowest 
voltages obtained at case 1 in order to place DG. The test 
case was the 33-bus radial test feeder. The experiments 
showed that case 3 had a better result than the other two 
cases, but it has to be noted that a DG unit cannot be 
installed in all evaluated scenarios. 

Sulaima et al. integrated Evolutionary Programming 
(EP) and PSO to develop a Modified Evolutionary PSO 
(EPSO) in [40]. The contribution of this algorithm is that in 
every single iteration, both old and new particles are 
combined and subjected to a tournament selection. Best 
positions get a bigger probability to gain the tournament and 
obtain a higher position in the ranking of solutions in that 
iteration. The highest positioned option is then checked for 
convergence of PSO conditions. The fitness function was 
reduction of power losses. This method was analyzed in a 
69-bus test feeder against PSO and regular EPSO, providing 
better results in minimizing power losses. Other PSO 
adaptations are in [80]. 

 
3.2 Genetic Algorithm (GA) 
The GA has been used for several applications. It was first 
developed by Holland in his Doctoral thesis [114]. In 
reconfiguration problems, it is an adaptive and good choice 
for finding an optimal or near-optimal value. Some cases are 
mentioned below. 

Tomoiagǎ et al. designed a GA based on connected 
graphs using branch lists instead of an adjacency matrix [43] 
because the latter is almost full of zeros. To get a good initial 
“chromosome,” an ecological niche method was used and a 
sharing function was implemented for determining the 
selection operator of the algorithm. The crossover operator 
was made thanks to a cyclomatic number, which guarantees 
that only one element is changed for each loop of the 
system. Finally, in the case where a non-radial configuration 
was found, both mutation and inversion operators were 
inserted to ensure that all loads would be fed. The proposed 
algorithm was tested in five test systems (16-bus and three-
feeder system, 33-bus system, 70-bus system, 69-bus and 
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two-feeder system, and an 83-bus and two-feeder system). 
Similar approaches are developed in [47] and [58]. 

Electricity companies require designs that allow them to 
take a decision with good forecast. The methodology 
developed in [115] contains a study with long-term 
conditions. Distributed generation and reconfiguration are 
introduced together in order to improve the state of the 
system and also to reduce CO2 emissions and investment 
costs. This is why the Non-Dominated Sorting Genetic 
Algorithm (NDSGA) proposed by the authors deals with 
multiobjective and multi-year problems. Moreover, 
uncertainties about wind, solar, and load profiles were 
manifested in the paper as it would be the method more 
applicable to real companies. This algorithm was proved in 
two power systems: the 38-bus test system and 119-bus test 
system. Similar approaches are shown in [57] and [63]. 

Eldurssi and O’Connell expanded the NSGA with a new 
approach in [19]. The Fast Non-Dominated Sorting Guided 
Genetic Algorithm (FNSGA) enables working with 
multiobjective functions directly or assigning values to each 
function as determined by the operator. This algorithm uses 
guided mutation instead of a random one, which allows the 
elimination of “bad” chromosomes (non-radial 
configurations) and guarantees that the next generation will 
maintain good solutions. This algorithm was tested in three 
systems (16-bus test system with three feeders, 69-bus test 
system, and a real 136-bus test system from a Brazilian 
distribution system), showing the accuracy and speed of the 
proposed method. Similar methodologies are followed in 
[59] and [108]. 

A study of a real-life scenario at ACEA Distribuzione in 
Italy was developed by Luca et al. in [116] that utilized a 
GA for the integration of DG units in a small smart grid. It is 
considered that real networks must be updated constantly; 
thus, this approach focused on making a comparison 
between time-constraint (TC) and time-unconstraint (TU) 
scenarios based on the daily load curve and significant 
changes in load and PV generation profiles from hour to 
hour. The TC scenario demands the algorithm get a solution 
in a period of 1 h, whereas TU does not have that constraint. 
The results showed that GA could be used for a time-
constraint setting due to the differences between TC and TU 
problems being not too large. The problem was established 
for reducing active power losses. Some similar results are 
identified in [81], [82], and [83]. 

Feeder distribution reconfiguration was used with the 
assistance of a GA and the matrix of adjacency for selecting 
feasible configurations in [117]. The authors proposed a 
roulette wheel methodology for choosing the chromosome 
(i.e., the open/closed status of switches in the network). The 
objective function was to minimize the total cost of 
purchased energy, taking into account the status of switches, 
tap positions of transformers, and the power factor of DG 
units. The algorithm was tested in a 16-bus modified system 
and a real Iranian 204-bus system. The results showed that 
when reducing purchased energy cost, the operation costs 
are also diminished. Similar outcomes were achieved in [60] 
and [61]. 

The GA is also used for reducing both the Customer 
Average Interruption Duration Index (CAIDI) and Customer 
Average Interruption Frequency Index (CAIFI) by changing 
the topology of the distribution system. Do Nascimento et al. 
proposed in [118] an effective manner to restore service to 
customers while a fault occurs in the feeder, supporting a 
DG installed for industrial plants such as Co-Generation. 
The GA works as follows: the chromosome selection 

process is made in a random manner. The crossover 
operation guarantees that any chromosome may suffer a 
change when in combination with any other chromosome. 
This process is also random. Finally, a mutation process is 
required to allow differences among the best options’ 
offspring. The test system used was the real scenario of AES 
Eletropaulo with hydro turbines, steam turbines, and the 
power grid. Other works related to GAs are in [107]. 

Kanwar et al. performed three improved metaheuristic 
techniques in [24]: GA, PSO, and Cat Swarm Optimization 
(CSO). The Improved GA, PSO, and CSO follow some of 
the rules established by the authors to avoid local trapping, 
which derives local, but not global optima. The CPU time is 
also reduced because the first solution is guided to a better 
fitness function value. The algorithms were proved on IEEE 
33- and 69-bus systems to determine shunt capacitor and 
distributed generation allocation first and, after that, 
reconfiguration to maximize the percentage of energy 
reduction. In all simulations, the improved algorithms 
obtained better results than the originals, with faster 
convergence. Similar developments are in [62] and [99]. 

Sultana and Roy used the Opposite Krill Herd (OKH) 
algorithm to solve the problem of optimal capacitor location 
and feeder network reconfiguration together [41]. The 
proposed method describes the behavior of krill herds when 
moving toward food and when predators are close. The 
authors compared its proposal with the original Krill Herd 
(KH) algorithm and with two other techniques (Non-
dominated Sorting Genetic Algorithm and Fuzzy 
multiobjective approaches). Finally, the proof was carried 
out using IEEE 33- and IEEE 69-bus test systems in three 
scenarios: constant power, constant current, and constant 
impedance. Each scenario was developed in the presence of 
a rated load and a stress load. The results showed that OKH 
has better performance and accuracy than the other 
techniques. 

Shamsudin et al. developed a Selection Improvement 
GA (SIGA) that includes reassembly processes [36]. In this 
paper, a string is created to compare the results found by 
each chromosome in every single iteration that allows 
sorting the results according to the fitness objective (power 
losses and voltage profile) evaluation, giving a reasonable 
way to do the selection because the best evaluated has a 
bigger probability to acquire descendants. The SIGA is 
compared with GA in eight cases as defined by the values of 
both crossover and mutation operators. SIGA presented 
better results than GA in accuracy for the 33-bus radial test 
feeder. A similar methodology was presented in [35], where 
the selection process is carried out thanks to the roulette 
wheel, but there is a re-ranking process of the solutions 
acquired at each iteration, which gives the fittest ones a 
bigger change to have offspring. Other papers that deal with 
this topic are [46], [100], and [105]. 

 
3.3 Simulated Annealing (SA) 
Simulated Annealing is a technique that mimics a particular 
phenomenon whereby liquids freeze and metals recrystallize 
in the process. It takes the probability of a particle to pass 
from a lower energy to a higher energy state while 
considering its temperature. It was proposed initially by 
Kirkpatrick, Gelatt, and Vecchi in 1983 [119]. 

Olamei et al. published their paper [32] proving a hybrid 
ACO-SA (Ant Colony Optimization – Simulated 
Annealing)-based metaheuristic technique to solve both the 
reconfiguration and sizing problems of DG units. The 
process started by selecting the vector positions using ACO. 
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Then, the selection of new positions was realized upon SA. 
Finally, through ACO, convergence was tested. The 
algorithm was used in a real 31-bus system connected to 
three substations and three DG units. The topology could be 
changed because there were four tie switches. A comparison 
with ACO, PSO, TS (Tabu Search), DE (Differential 
Evolution), and GA, show that ACO-SA provided the best 
solutions. Similar approaches are presented in [84]. 

Nournejad et al. used SA and GA to compare results 
obtained from a VSHDE (Variable Scaling Hybrid 
Differential Evolution) algorithm applied to a feeder 
network reconfiguration in [31]. VSHDE is an effective 
method for avoiding the main drawback of HDE, which is a 
fixed scaling factor that produces possible local optima 
instead of the global one. To make it variable, the authors 
used the one-fifth rule for determining the current value of 
the factor in each iteration. This algorithm was tested on a 
16-bus system with three feeders and a 33-bus system from 
the TPC. The results showed that VSHDE is more accurate 
and has better performance than GA and SA. 

Chen et al. mixed concepts from SA and Immune (SAI) 
algorithms to avoid local stagnation in [95]. The objective 
function was to reduce power losses in distribution systems. 
The authors proposed to encode the topology into loops and 
apply the branch exchange method for limiting the code to 
feasible options. This allows the algorithm to be fast. They 
used the Immune algorithm for shaping the genes and 
mutating them when needed. The selection process was 
based upon SA equations, taking into account the 
temperature (fitness function) of each element. Finally, they 
used a vaccine and inoculation-based method to determine 
the dominant gene. This technique was compared with a 
Fuzzy GA, demonstrating that SAI has better performance. 
The test system was an IEEE 69-bus system. 

Samui et al. studied the planning problem for radial 
distribution systems using a direct approach derived from 
the principle of optimality in [11]. They proposed an 
algorithm that searches an optimal path between the main 
substation and the farthest load node. If any previous node is 
encountered in such a path, then it is not necessary to search 
any other path to feed that node. Nodes that are not covered 
by those paths must receive a similar procedure. This 
algorithm was proved on two systems, a 25-bus system and 
a 51-bus system, with four different substations. In the last 
one, they contemplated the possibilities of not having all the 
substations connected. Results were compared with SA, GA, 
and ACO (Ant Colony Optimization), finding similar results 
with minor time consumption. 

Nie et al. integrated SA coded in MATLAB language 
and a power simulation program called Open Distribution 
Simulator Software (OpenDSS) in [29]. The authors’ 
purpose was to evaluate the real power losses in a 
distribution system in normal operation subject to different 
load levels with DG and a post-fault behavior for localizing 
paths in order to power every load in the presence of DG. It 
was possible in a 33-bus test system, where power loss 
values decreased and restoration possibilities after the fault 
were found, when DG are installed in the network. 

Farahani et al. proposed an improved reconfiguration 
method concerning a simple branch exchange, mixed with 
GA and SA, for both reconfiguration and capacitor location 
problems in [100]. The authors determined to search for loop 
sequences first by applying the branch exchange-based 
method. They then used two different methods for 
comparison, namely, GA and SA. When loop sequences 
were obtained, both GA and SA looked for the optimal 

placement and reactive power magnitude of the capacitor 
units. This approach was tested on a real two-feeder 77-bus 
system upon different load levels and a time-varying loads. 
GA returned more effectiveness than SA due to its minor 
time consumption and accuracy. 

Bruno et al. presented interesting results from a smart 
grid project developed on the real power distribution 
systems of two distribution companies in Italy [18]. A 
Simulated Annealing-based method was used to determine 
the optimal configuration of feeders in both planning and 
operation modes. This project worked from a SCADA 
framework, which allows data acquisition and control of the 
whole system. Fitness functions and constraints were 
checked on an OpenDSS simulator and SA was performed 
using MATLAB code. The purpose was to determine the 
amount of power injected from the DG without violating the 
technical limits and time restriction. The results were 
confirmed from a real system based on 11 feeders, two 
transformers from the main substation, and 930 buses. 

Kritavorn et al. worked on a Simulated Annealing 
approach in [25] for minimizing active power losses in 
distribution systems using both reconfiguration and DG 
location-sizing. They proposed a 69-bus test system for 
validating the effectiveness of the SA algorithm. All 
branches were considered as sectionalizing switches. The 
results demonstrated that both reconfiguration and DG can 
diminish power losses, thereby saving energy production 
costs. 

 
3.4 Ant Colony Optimization (ACO) 
Ants use pheromones to communicate with each other in 
order to get food to the nest. The decision to choose a path 
depends on the amount of pheromones located on it and the 
evaporation rate [17]. 

A Fuzzy-ACO algorithm is proposed in [17], where the 
principles of fuzzy logic are applied to make the Ant Colony 
algorithm more efficient. The algorithm is used in 
multiobjective problems such as loss reduction, voltage 
profile improvement, and load-balancing index reduction in 
a distribution system. Five test scenarios are proposed: the 
base case; reconfiguration only; reconfiguration and PV 
allocation; reconfiguration and DSTATCOM allocation; 
reconfiguration with PV allocation; and DSTATCOM 
allocation. Experiments were worked out on a 33-bus test 
system and a real 11-feeder TPC system. Results showed 
that reconfiguration with PV allocation and DSTATCOM 
allocation is optimal, and these were compared with Fuzzy-
PSO and Fuzzy-GA, getting a better performance with 
Fuzzy-ACO. Similar results are presented in [85]. 

Wu et al. proposed an Ant Colony Search (ACS) 
algorithm to optimize distribution networks [9]. The novelty 
in this paper involves heuristic techniques for updating the 
global pheromone matrix, allowing to exploit as many 
solutions as possible. Fitness functions were defined to be 
loss reduction and load-balancing index improvement, 
considering DG penetration. The experiments were 
developed on a 33-bus test system and a real TPC 
distribution system. The proposed method was compared 
with AS and GA and obtained better performance with the 
ACS algorithm than with the other ones, which demonstrates 
that DG contributes to improving the grid. Similar works are 
presented in [66] and [68]. 

ACO has been improved as researchers make some 
adaptations by introducing other techniques. In [33], Saffar 
et al. presented a Fuzzy-ACO to solve a multi-variable 
problem, namely, power losses reduction and load balance 
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improvement. The optimization is performed using 
weighting factors and membership functions in order to 
make the single functions above compatible. The pheromone 
updating process was worked out considering the resistance 
and voltage drop on each branch. The method was tested on 
both modified IEEE 33-bus and 69-bus distribution systems 
and compared with GA, Refined GA (RGA), Fuzzy, 
heuristic techniques, SA, and Plant Growth Search (PGS), 
returning the best results for the multi-variable function. 
Other works are developed in [67] and [84]. 

Swarnkar et al. used Heuristic Spark (HS) to focus the 
ants selecting only feasible solutions, considering several 
vectors that avoid loops and islands [42]. This algorithm is 
named “Adapted ACO” (AACO) based on the use of 
heuristic techniques. With such implementation, the 
algorithm is able to select only trees to evaluate the fitness 
function, which is power losses reduction. Once a solution is 
reached, it must be compared with previous solutions to 
determine their similitude; if they are the same, then a power 
flow algorithm is not necessary to be run because the answer 
will be the same. The above contributions let the algorithm 
find an optimal solution in less time. It was proved with 33-, 
70-, 83-, 119-, 136-, and an unbalanced 33-bus systems, and 
compared with other metaheuristic and heuristic techniques, 
such as GA, RGA, HBMO, Heuristics, SAPSO, AIS, 
MSFLA, and ITS, getting better results or, in some cases, 
the same, but the efficiency was always better. Other works 
related to ACO are reported in [88]. 

Abdelaziz et al. introduced the Hyper-Cube (HC) 
framework to the ACO algorithm for solving the 
reconfiguration problem of distribution systems [91]. The 
HC-ACO uses the transition states for updating the amount 
of pheromones at each iteration, maintaining the maximum 
value of pheromone as unity while that branch is part of the 
solution at every iteration. The proposed method was 
implemented in the 33-, 69-, and 118-bus test systems. A 
comparison was made in the 69-bus test system, where three 
different scenarios were proposed: light, normal, and heavy 
load. In all testing, HC-ACO obtained the same results as 
SA, TS, Modified TS (MTS), and MPSO, but was less time-
consuming. Similar methodologies are followed in [87]. 

Scenna et al. identified a wide range of Ant Search 
algorithms in [34]. According to transition rules, virtual ants 
are guided considering heuristic movements. Two important 
parameters are the pheromone updating and the desirability 
to choose a path. Such desirability is considered the inverse 
of branches’ resistance as it is a direct parameter to calculate 
power losses. ACO was proved against several heuristic 
techniques, providing the same or better results with an 
improvement in efficiency as reflected in the reduced time. 
The systems used were the 33- and 69-bus test systems. 

Ahuja et al. [93] used the pheromone updating strategy 
of ACO and the crossover operator from GA to implement a 
Pheromone-Based Crossover Operator to the distribution 
power grid reconfiguration problem. Real losses reduction 
was selected as a single fitness function. The crossover 
operator guarantees the exploration–exploitation balance in 
order to avoid local minima and to search around the best 
combinations, a concept derived from elitism. The 86-, 94-, 
136-, and 201-bus systems were used to demonstrate the 
effectiveness of the algorithm in medium- and large-scale 
systems. It was also compared with a uniform crossover 
algorithm and other heuristic techniques, obtaining similar 
results in medium-scale systems, but a better performance 
and accuracy in large-scale systems. Other works are in [86]. 

Abdelsalam et al. performed an analysis on the 
intermittent PV and wind turbine variables, such as solar 
irradiance and wind velocity, in distributed generation 
connected to a distribution power system in [92]. The scope 
of this research is to determine the optimal location of PMUs 
(phasor measurement units) in distribution power systems 
considering reconfiguration. ACO is used in reconfiguration, 
taking into consideration the intermittence of distributed 
generators. A Greedy Algorithm is used for locating the 
PMUs properly based on the reconfiguration process. The 
IEEE 33-bus test system was selected to develop 
experiments. The analysis demonstrates that PMUs are 
necessary for visualization of power systems and, according 
to the topology of power grid, more or less PMUs are 
required. 

Mehfuz and Rashid used the ACS algorithm to reduce 
active power losses in distribution systems [26]. Following 
the behavior of ants to search food, the algorithm is capable 
to find an optimal or close configuration of the power grid 
that reduces active power losses. The ACS was compared 
with the Artificial Bee Colony Algorithm (ABCA), SA, 
Differential Evolution (DE), GA, and MGA in IEEE 14- and 
16-bus test systems. The results demonstrate the accuracy 
and efficiency of the proposed method. 

Meng et al. [45] proposed a bi-level programming 
scenario using ACO for up-level and GA for low-level. The 
scope of the paper is to diminish the switching operations 
and reduce power losses. The ACO algorithm worked out 
the reconfiguration of the grid in a first stage while the GA 
optimized the scheduling of DG-controllable units, such as 
wind turbines, PV arrays, and micro turbines moved by fuel. 
This method demonstrates in a modified IEEE 33-bus test 
system that the amount of switching operations can be 
reduced if DGs are available. Markov chains estimated DG 
power input. Other results are presented in [89]. 

 
3.5 Immune Algorithms (IA) 
Immune algorithms are nature-inspired in that they mimic 
the behavior of genes and antibodies while defending the 
human body from viruses and infection or bacteria [44,120]. 

In [44], an Improved Immune Genetic Algorithm 
(IIGA) is proposed to reduce active power losses in 
distribution networks. An encoding strategy is made to select 
only feasible solutions because distribution power grid 
reconfiguration must maintain a radial structure: such a 
methodology is called a “fundamental loop.” To prevent 
premature convergence into a local optimal solution and 
speed up the convergence, hypermutation and immune 
operators, such as vaccine pool, are addressed. Finally, a 
tournament operator with parent offspring competition is 
introduced. The IIGA was proved on the 33- and 69-bus test 
systems against GA, hybrid PSO, GA, and derivations of the 
same. The results demonstrated that IIGA has an excellent 
efficiency and performance. Similar works are established in 
[74]. 

Belkacemi and Feliachi [120] developed research based 
on multi-agent systems for power system reconfiguration 
and restoration. It was designed as a multi-level scenario. 
Mimicking the thymus in the human body, a master agent 
located at the substation level conducts the whole system 
while other agents (same as T-lymphocytes) are delivered to 
the system: student agents, load agents, node agents, and DG 
agents. Each agent has a particular task: to open/close a 
branch, to shed/feed a load, or to change the topology of the 
system. A neural network was used to learn about viruses 
and bacteria, which are represented by faults and voltage 
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profile violations. This approach allows the Multi-Agent 
System (MAS) to make smart decisions. To demonstrate its 
effectiveness, it was implemented on the Southern California 
Edison’s Circuit, known as the Circuit of the Future. The 
case simulated was a fault that isolated a load and the MAS 
was capable of restoring power to it by reconfiguring the 
grid. 

An Immune GA was presented by An et al. in [94] to 
solve the feeder network reconfiguration problem while 
reducing real power losses. In this paper, GA concepts are 
joined with some features of the human immune system 
when defending the body against antigens. Those features 
are the production of antibodies, affinity and density for 
memory of cells, and promotion and suppression of antibody 
production, depending on the fitness value of each antibody 
(system configuration). Population updating was considered 
the same as in normal GA. Additionally, a loop-based 
procedure was integrated to avoid unfeasible solutions. 
Simulations are carried out on the IEEE 33-bus test system, 
comparing the initial configuration with the optimal one and 
without a comparison to other algorithms. Similar methods 
are followed in [69] and [70]. 

Wang et al. [96] established a hybrid Immune-Based 
Co-Tabu Search Algorithm (ICTSA) proposal, which is 
between the Co-TS and Multi-Agent Immune-Based 
algorithms. Initially, it describes two types of organisms, 
antigens, and antibodies. The objective function is 
minimization of active power and constraints are considered 
the antigens (bacteria or viruses), whereas the candidates for 
good solutions are considered the antibodies. The antibodies 
are selected through the implementation of a tabu search 
process. The affinity function and its maturation from IA 
was used to update/change the combinations. The IEEE 33-
bus test system was addressed to verify the effectiveness of 
the proposed algorithm. It was compared with Clonal GA 
(CGA) and Immune CGA (ICGA), gaining better results for 
ICTSA in time consumption and minimization of active 
power. Other hybrid algorithms can be found in [71]. 

A hybrid Simulated Annealing Immune (SAI) algorithm 
was presented in [95]. Chen et al. considered a loop-
encoding method to avoid unfeasible solutions for the radial 
reconfiguration problem. The main objective is minimization 
of real power losses. The algorithm initializes the process 
using stochastic steps based on immunology to generate 
initial genes (solutions). Hypermutation is accomplished 
before selecting the initial temperature, and the Boltzmann 
constant from the SA operator is calculated to eliminate 
degeneration. Concepts of vaccination and inoculation are 
applied later to construct the next generation. This algorithm 
was tested on the IEEE 69-bus test system and compared 
with a Fuzzy-GA, obtaining the same results, but with faster 
performance considering SAI. 

Gu et al. [21] presented an improvement of GA 
considering the benefits of immunity. An Immune GA (IGA) 
is proposed that avoids premature convergence and local 
stagnation with the aid of an immune memory function, 
antibody diversity keeping function, and self-regulating 
function. This loop-based methodology was considered to 
escape from isolated and non-radial configurations. Power 
loss minimization was selected as the objective function. An 
IEEE 33-bus test feeder was used to verify the feasibility of 
the approach, obtaining better results against GA in reducing 
losses and improving the voltage profile. 

An Artificial Immune Network for Combinatorial 
Optimization (Copt-aiNet)-based and Artificial Immune 
Network for Optimization (Opt-aiNet) approach was used in 

[39] to solve the reconfiguration problem. It uses the 
fundamental loop theory to avoid non-radial configurations 
and a backward/forward sweep-based method to evaluate 
affinity, which is the objective function (power losses). The 
concepts of hypermutation, memory of antibodies, meta-
dynamic processes, strong and weak mutations, and clonal 
processes are considered to achieve the optimal solution. 
These two algorithms were tested on five different systems 
as the 33, 70, 84, 119, and 136 nodes along with a real one 
with 417 nodes. The results were compared with those 
obtained in specialized literature and found to be the same, 
with the real system offering a better result. Copt-aiNet was 
demonstrated to be faster than Opt-aiNet. Other papers 
referring this topic are in [72] and [75]. 
 
3.6 Tabu Search (TS) 
The Tabu Search is a metaheuristic technique developed by 
Glover [121,122]. This technique aims to emulate the human 
mind in order to avoid repeating previous configurations or 
events. The process of the algorithm has a tabu list that 
registers all the events or configurations evaluated before, a 
configuration space where the possible solutions are located 
(space of solution), and an aspiration criterion that allocates 
the best solution in the first line of the tabu list; however, if 
there is an improvement in other iterations, then it has to be 
moved. Some contributions to distribution power grids are 
listed below. 

Abdelaziz et al. [16] proposed a Modified TS (MTS) 
that consists of a variable-sized tabu list to escape from local 
minima. Besides, a constrained multiplicative move is also 
used to avoid local minima. This approach allows the 
algorithm to exchange branches in a multilevel manner and 
explore the vicinity. An incidence matrix is implemented to 
guarantee a radial topology. The objective function is real 
power losses reduction in feeders. Finally, the algorithm is 
tested on three distribution systems: 16-, 69-, and 119-bus 
test feeders. In the case of the 69-bus feeder, three different 
scenarios are analyzed: normal, heavy, and light loads. The 
effectiveness is proved against SA, GA, Artificial Networks, 
and hybrid approaches between them, thus demonstrating 
the accuracy of the proposed method. Similar approaches are 
made in [73]. 

A comparison among binary coding, decimal coding, 
and loop-based decimal coding schemes is presented in [38] 
to determine the least time–consuming and most effective 
and optimized feeder network reconfiguration. The loop-
based decimal coding scheme improves the speed of 
convergence and avoids unfeasible solutions (non-radial 
configurations). The Tabu Search is used in the optimization 
process and is simulated on a 69-bus feeder system, 
providing a better result than the initial state. No 
comparisons are presented. In [37], the authors continued the 
research presented in [38] by introducing capacitor 
placement. Similar results are obtained when loop-based 
encoding is applied to avoid unfeasible configurations. A 
Tabu Search-GA algorithm was introduced in the same way 
as before to solve the optimization problem. Again, the test 
system was the 69-bus test feeder. 

Franco et al. integrated a TS algorithm using several 
approaches to reduce time consumption and minimize power 
losses in distribution power systems [20]. A loop analysis is 
introduced that initially considers the tie switch in a loop and 
classifies the sectionalized switch into one of two groups: 
the right-positioned group or the left-positioned group. 
Doing so, the neighborhood can be reduced to only feasible 
configurations. Additionally, an approximate calculation of 
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objective function is introduced to reduce the number of 
complete power flows. A reduction of neighbors is 
implemented, which limits branch exchange to the nearest 
branches positioned close to the tie switch until a higher 
objective function value is found. This reduces the time 
expended by the method to find the optimal solution. This 
method is compared with others presented in the literature as 
other TS and heuristics, obtaining the same or better results, 
but always with less time consumption. The test systems 
where this method is proved are the 33-, 84-, 119-, and 136-
bus systems. 

Garcia and Espinosa used a TS algorithm to solve the 
reconfiguration problem in a reduction of voltage sag events 
presented during one year in a distribution system [101]. 
Two approaches are performed for analyzing voltage sag 
events. In the first scenario, a threshold of events is 
considered independently to each bus, whereas in the second 
scenario, the same threshold of events was considered to all 
buses. Three-phase faults were selected for analysis. The 
voltage limit to determine a voltage sag was 0.8 pu. The 
reconfiguration was worked out only when the number of 
events was above the threshold. To prove the effectiveness 
of the method, the IEEE 57-bus test feeder is used, obtaining 
reductions when reconfiguration is developed. 

Garcia and Espinosa continued the work presented in 
[101] by applying an extension in [102]. In this work, the 
scenario where each bus has a threshold of voltage sag 
SARFIx is considered, which is the number of sags 
presented in a bus, group of buses, or the whole system. The 
difference is to consider both three-phase- and single-phase-
to-ground faults in the analysis. TS is used to enhance the 
reconfiguration process, thereby minimizing the SARFIx 
index. The sag prediction method is proposed by Espinosa 
and Hernandez in [123]. This time, 57- and 118-bus test 
systems are used to demonstrate the effectiveness of the 
proposal. 

Hemdan et al. analyzed the growing behavior of DG in 
distribution power grids in Germany in [22]. A real feeder 
network, provided by local utility VDEW (Verband der 
Elektrizitätswirtchaft), is studied to reduce the annual energy 
losses in the presence of DGs. To reduce losses, 
reconfiguration is made by TS algorithm using aspiration 
while a tabu configuration presented a better solution than 
the best so far in the tabu list, and diversification, that allows 
the change of the process when no convergence is found in 
Tabu list configurations. The units considered by the 
operator are Combined Heat and Power (CHP) plants and 
PV arrays. The scenarios evaluated were classified into 
seasons and different kinds of days (e.g., sunny, rainy, and 
windy). In addition, a constant injection at different levels of 
PV was taken into account along with a forecasting 
evaluation of the PV profile. The load profile was defined by 

VDEW as residential or commercial. Results showed that 
the methodology can be used for any utility to reduce annual 
energy losses. The authors performed a forecasting analysis 
for different loads. Other works concerning TS are 
developed in [90]. 
 
	
4 Conclusions 
 
This paper presented a review of some metaheuristic 
techniques used for solving the DNR problem. A brief 
description of PSO, GA, SA, ACO, IA, and TS is included. 
The most recent and relevant papers are summarized to 
provide a base from which researchers can start their 
investigations and to focus on the results they hope to get. A 
timeline was also presented to verify that metaheuristic 
techniques are used nowadays because of their velocity of 
convergence and accuracy in finding the optimal solution of 
reconfiguration problem.  

To summarize, most research papers treat the fitness 
function as power minimization and voltage profile 
improvement, whereas other papers examine voltage sag and 
load-balancing indices among other functions. The most 
used constraints are power balance, node voltage limits, 
branch current limits, radiality that can be achieved with a 
detailed number of branches, and an incidence matrix that 
maintains all fed loads. GA is the most used metaheuristic 
followed by PSO. Other techniques, such as SA, ACO, IA, 
and TS, are applied less for network reconfiguration. More 
recent algorithms, such as Cuckoo Search [23], Bacterial 
Foraging Algorithm [124], Bat Algorithm [125], and hybrid 
developments are growing and promise to be good options 
for future contributions.  

It is necessary to develop new approaches in order to 
make these techniques faster as power systems expand and 
technologies advance. Faster techniques will allow network 
operators to act for continuous improvement. Researchers 
have very good options in the path of systems optimization. 
It is expected that the implementation of these algorithms 
will progress due to their effectiveness and speed. 
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