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Abstract 
 

Visual redundancy, which acts on the low-attention areas of images, can be applied to video encoding due to the selection 
mechanism of the human eyes, thus improving efficiency. To reduce the impact of visual redundancy on video coding, a 
novel method of distinguishing the level of image attention was proposed in this study. The method was used to estimate 
visual attention according to the sensitivity of human eyes to the motion, texture, contrast, and brightness of images. 
Then, different coding strategies were adopted according to the different visual attention levels of the coding blocks. The 
structural similarity index algorithm was applied to high-attention coding blocks; the visual attention coefficient was 
employed to refine the Lagrange multiplier so that the quantizer can adopt a larger quantization step for low-attention 
coding blocks. Results show that the coding bit rate is reduced by an average of 30.33% when the luminance peak signal-
to-noise ratio increments are reduced by merely 0.11 dB and the coding time is increased by only 0.75%. These results 
indicate that visual redundancy has a considerable influence on video coding efficiency. Thus, the proposed method 
provides a bright prospect for optimizing the design of encoding strategies. 
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1. Introduction 
 
Video coding performance depends on three factors, namely, 
coding rate, compression distortion, and computational 
complexity, in which compromise and optimization design 
are fundamental. Rate-distortion optimization (RDO) 
determines not only the best balance between the bit rate 
(BR) and the video image distortion but also the optimal 
coding parameters for the encoder [1]. The good 
performance of RDO has made it extensively used for 
encoding strategies, and its design has attracted significant 
attention. Therefore, the design of the RDO algorithm is an 
interesting and significant research subject. Previous studies 
showed that the correction of the Lagrange multiplier is a 
popular method for RDO and frequently used to improve the 
efficiency of coding compression [1] 

In the existing literature, the emphasis on RDO design is 
mainly on the determination of the Lagrange multiplier [2]. 
This process has become a challenge to coding algorithm 
designers because of numerous influencing factors, such as 
the texture features of the image and the complexity of video 
content. Meanwhile, the computational complexity of this 
process is also restrictive. In addition, the subjective 
perception of a video is affected by various factors, such as 
motion, contrast, color, texture, and brightness, and the 
masking effects of space, time, and color. Therefore, the 
influence of subjective visual redundancy on the correction 
of the Lagrange multiplier cannot be ignored [3]. 

On the basis of the above analysis, this study investigates 
a core problem in the design of the RDO algorithm 
according to visual attention. 
 
 
2. State of the art 
 
Traditional video coding methods focus mainly on 
processing redundant information in video signal and 
encoding optimization algorithms on the basis of video 
encoding standards. Zhao Hong et al. applied the Canny 
operator to segment images by taking advantage of the video 
texture feature, thus effectively reducing the coding 
complexity and time. Their method predicted the coding 
depth according to the distribution of the coding unit such 
that depth judgment was terminated in advance [4]. High-
efficiency video coding (HEVC) defines 35 intra prediction 
modes, thus having a high coding complexity. Duanmu C J 
et al. proposed an algorithm for effectively shrinking the 
number of candidate modes to be checked and consequently 
reducing the complexity of HEVC. They utilized edge 
detection and Hough transform for the prediction unit with 
different sizes and statistical analysis for the detected edge 
line angles to determine the candidate modes to be checked 
[5]. 

Although traditional coding algorithms perform well, 
they ignore the key point. That is, the final recipients of 
videos are human eyes, which implies that the perceived 
quality of videos is inevitably affected by the human visual 
system (HVS). Therefore, cues from HVS can be used for 
further compression optimization in modern hybrid video 
coding platforms and were an effective means of reducing 
complexity [6]. Furthermore, the accurate estimation of 
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visual redundancy in video images is important for the 
design of video coding algorithms. Currently, most 
analytical methods for video coding regard visual 
redundancy segments as video images according to visual 
features, and then encode different image areas [7]. Kalva H 
et al. explored and exploited motion-related attentional 
limitations and developed algorithms for exploiting motion-
triggered attention [8]. Guraya F F E et al. used a state-of-
the-art visual attention model developed by combining 
bottom-up, top-down, and motion cues [9]. However, visual 
attention is developed specifically for surveillance videos. Li 
F et al. divided the macroblock (MB) into region-of-interest 
(ROI) MB and non-ROI (NROI) MB according to human 
visual features; for NROI MB coding, the active MB 
concealment (AMC) mode in RDO was proposed; AMC 
trades off the quality of the NROI MBs with the rate, 
distortion, and improved quality of the ROI MBs at the cost 
of the quality decreasing of the NROI MBs, thus achieving 
rate control on the basis of the MB [10]. Hua K L et al. 
presented a novel block-based image coding algorithm that 
applied a tree-structured multi-tree dictionary and a 
perceptual rate distortion optimization scheme [11]. 
Although multi-tree dictionary is employed to support 
various tailings, perceptual rate distortion optimization 
utilizes the structural similarity index (SSIM) metric instead 
of the popular mean squared error metric to allocate the BR 
according to HVS. 

Furthermore, these methods are limited to 2D videos and 
exhibit poor performance in 3D animation. Guillotel P et al. 
proposed a new perceptual coding scheme that considered 
the HVS. They include perceptual distortion measures in the 
encoding loop to compute the adaptive local quantization 
step size and optimize the choice of MB quantization 
parameters on the basis of HVS [12]. Jin G et al. proposed a 
coding scheme that jointly applied perceptual quality metrics 
to prediction, quantization, and RDO within the HEVC 
framework. They introduced a new prediction approach that 
used template matching, which employed an SSIM and the 
just-noticeable distortion model. The matched candidates 
were linearly filtered to generate a prediction [13]. These 
methods either fail to adopt exclusive coding schemes for 
different visual attention areas or fail to realize the adaptive 
adjustment of the Lagrange multiplier. 

The above methods consider the impact of HVS on video 
coding. However, videos often have sound, and video sound 
also impact the focus of human eyes on video images. Lee J 
S et al. proposed an efficient video coding method using 
audiovisual focus of attention, which was based on the 
observation that the sound-emitting regions in an audiovisual 
sequence draw viewer attention. First, an audiovisual source 
localization algorithm was presented, in which the sound 
source was identified using the correlation between the 
sound signal and the visual motion information. The 
localization result was then used to encode different regions 
in the scene with different qualities such that the regions 
closed to the source were encoded with higher quality than 
those far from the source to reduce redundant high-
frequency information and achieve coding efficiency [14–
16]. This method increases computational complexity, that is, 
the accurate estimation of high-visual-attention areas in 
video images, and makes the synchronization problem of 
sound and image difficult to consider because the influence 
of sound is considered in video coding. On the basis of the 
analysis above, the audiovisual model is not adopted by this 
study. 

The redundant information in the video is divided into 
video signal redundancy and visual redundancy. These 
existing methods have been successfully applied to video 
signal redundancy processing, whereas few studies have 
taken note of visual redundancy. The color, brightness, 
contrast, and texture in 3D animation are robust; thus, visual 
redundancy research is particularly important [17]. This 
study proposes a novel adaptive encoding algorithm that is 
based on visual attention. Different coding strategies are 
adopted according to the different visual attention of coding 
blocks to reduce BR allocation to low-visual-attention areas 
and improve coding efficiency. 
 The remainder of this study is organized as follows. 
Section 3 establishes the adaptive coding compression model 
and proposes the method for calculating the visual attention 
factor. Section 4 discusses and analyzes the experimental 
results and the performance of this method. Section 5 
summarizes the conclusions. 
 
 
3 Methodology 
 
3.1 Visual Attention Based on HVS 
Humans can stare at a natural scene and choose the 
information of interest. They usually notice the rest of the 
field while paying attention to their target of interest. This 
selection mechanism has been widely used in computer 
vision research [18]. Visual perception is controlled by the 
mechanism of the selective attention of the brain, which has 
the option of maintaining and stimulating certain stimuli 
while ignoring others [19]. Therefore, the key to attention 
detection is establishing an attention model that simulates 
the selective attention mechanism of the HVS. 

Studies have shown that the HVS has a low degree of 
attention to flat and non-moving regions in an image and the 
information in these areas are easily ignored by human eyes. 
On the contrary, areas with many changes and abundant 
details are more likely to capture attention in the visual 
system than flat regions. Meanwhile, people tend to look for 
obvious target features as influenced by psychological 
factors [4]. To a certain extent, the selective attention 
mechanism of obtaining information plays a role in 
information compression. 

Calculating visual attention is an important step in 
adaptive compression, and the computational complexity 
should not be excessively high. In this study, a visual 
attention model is established by simulating the visual 
perception process. In the following, four HVS 
characteristics are studied: motion, brightness, texture 
complexity, and contrast factor. 
 
3.1.1 Motion Factor Based on Gray Projection Method 
Studies have shown that when a region of the video moves 
relative to the background, human eyes track these motion 
areas subconsciously. This behavior is called the smooth 
pursuit eye movement. Observers are more sensitive to areas 
with moving objects. The human eyes perceive distortions in 
these areas easily. On the contrary, distortions in non-
moving regions have a relatively slight effect on visual 
perception [20]. 
 In the case of a stationary background, the frame 
difference-based method has been used to extract motion 
areas and achieved good results. However, the general 
method based on frame difference cannot get a good 
segmentation effect when the foreground and background 
are moving simultaneously [4]. Therefore, to adapt to the 
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identification of various occasions by the motion areas, this 
study uses a low-computational-complexity and robust 
algorithm to calculate the motion factor (MF). 
 The gray projection method (GPM) is a simple and 
effective method that can estimate the global motion vector. 
This method projects a 2D image into the X and Y directions 
to obtain the projection curve and then finds the maximum 
cross-correlation value according to the gray scale projection 
curve of the current and previous frames. This method is 
widely used in electronic image stabilization [21]. 

GPM is used to obtain the motion vector of the coding 
unit of the current frame to analyze the motion areas in the 
image. The MF is shown in Eq. (1). 
 

2 2

max{ , }
x y

x y

GV GV
MF

P GV GV
+

=
×

                                        (1) 

 
where P is the current coding unit size, max{ , }x yGV GV  
represents the larger of the two, and MF is the motion factor 
or the ratio of the moving distance in the current coding unit 
to the moving distance sin the direction. 

GPM has strong robustness to foreground extraction 
because of the statistical properties of the adjacent frames it 
uses. Moreover, the GPM has low computational complexity 
and can be applied easily to real-time systems. 
 
3.1.2 Texture Factor 
According to the study of visual psychology, similar to the 
human desire to explore, human eyes pay more attention to 
areas of complex texture. Texture complexity is introduced 
as an important factor in the formula of attention. 

Luminance histogram represents the probability of each 
intensity level in the image, and the distribution range of 
each brightness level can represent the texture flatness 
degree of the image [10]. The highest frequency level of 
brightness ( popularB ) must exist in the luminance histogram. 
The ratio of a certain range of pixels distributed around 

popularB  to the total number of pixels denotes the texture 
smoothness of the largest coding unit (LCU), which is the 
texture factor in Eq. (2). 
 

8

i= 8

11 100, 0,1, , 1
popular

popular

B

i
B

TF N i L
M

+

−

= − × × ∈ −∑ L               (2) 

 
where M is the total number of pixels within the LCU, iN  is 
the total number of pixels at brightness level i in the LCU, 
and L is the level of total brightness. L is equal to 256 when 
the 8-bit quantization of histogram statistics is used. 
 
3.1.3 Contrast Factor Based on Four-Neighbor Method 
Studies have shown that human vision is more sensitive to 
color contrast, which is another important factor that 
captures human visual attention [18]. Therefore, contrast is 
introduced into the attention calculation as an important 
influence factor. According to the different areas of contrast 
calculation, contrast can be divided into two categories: local 
and global contrast. Local contrast is a measure of the 
difference in each pixel relative to their neighboring pixel, 
whereas global contrast is the spatial distribution of the 
image area color. 

Inspired by the contrast algorithm in [22], the four-
neighborhood method is used to calculate the regional-level 

global contrast factor (CF) while ignoring unnecessary 
texture information. 
 

 
Fig. 1. Illustration of CFN and PFN 
 
 

Fig. 1 presents a schematic of the coding unit four-
neighbor method (CFN) and the pixel four-neighbor method 
(PFN), in which the black center part represents the current 
pixel of the PFN, with the same size on the upper, lower, and 
left sides. In addition, the right gray part represents the four-
neighbor pixels. The upper left, upper, upper right, and the 
large left gray portions represent the four-neighbor coding 
units (CU) of the CFN. 

First, the PFN is used to calculate the difference (COT) 
between the pixel and the neighboring pixels, as shown in 
Eq. (3). 
 

( , ) ( , )

_

i j i j

cur cu

C C
COT

P
ʹ ʹ−

=
∑                                           (3) 

 
where ( , )i jC  represents the chroma value of the current pixel, 

( , )i jC ʹ ʹ stands for the chroma value within PFN, and _cur cuP  
indicates the total number of pixels in the current CU. 

Then, CFN is used to calculate the chromaticity change 
rate of the four-nearest-neighbor contrast of the CU, and the 
CF of the color is fully sensed, as shown by Eq. (4). 
Compared with the local contrast, the algorithm has higher 
reliability and better contrast calculation ability. 
 

_

_ _

4 cur cu

left up up right up left

COT
CF

COT COT COT COT
= ×

+ + +
               (4) 

 
where _cur cuCOT  represents the chroma contrast of the 

current CU, _left upCOT  stands for the contrast of the upper 

left side CU, upCOT  means the contrast of the upper side CU, 

_right upCOT  is the contrast of the upper right side CU, and 

leftCOT  represents the contrast of the left side CU. 
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3.1.4 Luminance Factor 
Studies have revealed that brightness affects visual 
perception. When the gray value of the scene is between 56 
and 108 in the region and the image changes are relatively 
slow in time and space, the human eyes have the strongest 
resolution and the visual sensitivity is relatively high. Under 
high or low brightness, the capability of human eyes to 
distinguish is subject to a certain impact and visual 
sensitivity is relatively low [23]. Meanwhile, the subjective 
sense of brightness depends not only on the actual brightness 
of the scene but also on the average brightness of the 
surrounding environment, which means that the subjective 
sense of the same brightness is different in different 
environments. 

On the basis of this theory, the CFN algorithm is used to 
calculate the luminance factor (LF), as shown in Eq. (5). 
 

( , )
( , ) _

( , )
( , )

4
i j

i j cur cu
avg

i j
i j CFN

L
LF

L
⊂

⊂

= ×
∑

∑
                                      (5) 

 
where avgLF indicates the average value of LF, 

( , ) _

( , )
i j cur cu

L i j
⊂
∑ represents the total luminance of the 

luminance pixels in the current CU, and 
( , )

( , )
i j CFN

L i j
⊂
∑  

indicates the total pixel brightness in the four neighborhoods 
of the CU. 
 
3.1.5 Calculation of Attention 
By obtaining the weighted average of the above key factors, 
the saliency factor (SF) is obtained as shown by Eq. (6). 
 

1
SF MF TF LF CFα β δ γ

α β δ γ

= × + × + × + ×⎧
⎨

+ + + =⎩
            (6) 

 
Numerous experimental results show that the best visual SF 
can be obtained whenα = 0.41, β = 0.25, δ = 0.22, and γ 
= 0.12. 

When the calculated SF is within the thresholds lTH  and 

hTH  and it is a high-attention CU, the Attention is 1. By 
contrast, when the SF is not in the interval [ lTH , hTH ], it is 
low-attention CU, as shown in Eq. (7). 
 

1.04 0.13
1
0.52 0.09

l

i l h

h

SF SF TH
Attention TH SF TH

SF SF TH

× + ≤⎧
⎪

= < ≤⎨
⎪− × + >⎩

            (7) 

 
where iAttention  represents the attention of the i-th coding 
unit. The best attention division can be obtained when lTH  

= 0.83 and hTH  = 2.1. 
 
3.2 Adaptive Coding Compression 
Different coding schemes are adopted to optimize the HEVC 
for different attention CUs after obtaining the attention value 
of the CU. For the high-attention CU, the SSIM rate 
distortion optimization algorithm is used as a measure factor 
of distortion and video clarity to reduce the coding 
computational complexity [12]. For the low-attention CU, 
the Lagrange multiplier is adjusted to correct the size of the 
quantization step and achieve a larger quantization step for 

the coefficients of the visual insignificant region and filter 
the partial high-frequency components to reduce the coding 
rate. 
 
3.2.1 High-attention CU 
In SSIM, the average of the pixels is used as the estimation 
of brightness, the standard deviation as the estimation of 
contrast, the covariance as a measure of the structural 
similarity, and the distortion as a combination of brightness, 
contrast, and structural similarity, as shown in Eq. (8) [24]. 
 

1 2
2 2 2 2

1 2

2 2x y xy

x y x y

c c
SSIM

c c
µ µ σ

µ µ σ σ

⎛ ⎞⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠

                      (8) 

 
where SSIM is the structural similarity evaluation function, 
xµ  and yµ  denote the two sequence pixel mean values, xσ  

and yσ  are the mean standard deviations of unbiased 

estimation, xyσ  is the covariance of x and y, and 1c  and 2c  

are the regulatory parameters. In addition, the value range of 
SSIM is [0, 1]. The closer the value is to 1, the better the 
quality of the CU block can be. 

For a high-attention CU, the Lagrange multiplier of the 
rate distortion is obtained using the dynamic rate distortion 
model mentioned in [13].  

First, the relationship between the distortion and 
quantization parameters is derived from many experimental 
statistics, as shown in Eq. (9). 
 

-3 10.2010 2.95 QP
SSIMD e= × ×                                    (9) 

 
where SSIMD  represents the calculated distortion when the 
SSIM is the distortion metric and QP is the quantization 
parameter. The relationship between the structural distortion 
and the quantization parameter is hence obtained.  

To adjust the RDO model dynamically on the basis of 
the input frame as in the research of [18], the dynamic 
adjustment factor sdσ  is introduced, which is the standard 
deviation of the discrete cosine transform (DCT) residual 
integer transform, as shown in Eq. (9). For a series of video 
frames, the DCT residual integer transform is uncertain, but 
the standard deviation of the residual integer transform is a 
relatively stable eigenvalue. When the contents of the input 
sequences are similar, the change in sdσ  is small. When the 
change in the contents of the latter frame is relative large, 
sdσ  can represent its conversion range. Therefore, sdσ  can 

stably represent the transform degree of the video texture, as 
shown in Eq. (10). 
 

2 2( ) [ ( )]sd E x E xσ = −                                       (10) 
 
where x is the coefficient of the current frame residual 
transform and ( )E x  is the expectation of x.  

Then, the relationship between the coding rate R and the 
quantization parameter QP based on the residual transform 
standard deviation is obtained, as shown in Eq. (19). 
 

3 10.081.205 10 ( )QP
sdR e bτσ−= × × × +                  (11) 
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The Lagrange multiplier is obtained according to the 
traditional HEVC rate distortion formula, as shown in Eq. 
(12). 
 

SSIM

SSIM
SSIM

D
dD QP

RdR
QP

λ

∂
∂

= − = −
∂
∂

                                 (12) 

 
where SSIMλ  represents the Lagrange multiplier, which is 
calculated in the SSIM. Substituting Eqs. (9) and (11) into 
Eq. (12) yields Eq. (13). 
 

-6
0.0210 2.42

11.50
QP

SSIM
sd

eτλ
σ

×
= ×

−
                                (13) 

 
where the value range of τ is [0.6, 1], and its value is 0.8 in 
[18]. However, an animation video is selected as the main 
test object in this study because scenes of artificial design 
are richer and colors are more vibrant in animation than in 
other videos. Furthermore, the HEVC HM16.6 experimental 
platform is used in such videos, thus making a value of 0.92 
reasonable. When the change in the current background 
frame is small and the possibility that the HEVC coding unit 
is selected as the “SKIP” mode increases, the high-attention 
CU is unacceptable because the picture quality is affected. 
To avoid this issue, the algorithm sets the same constraint. 
Given that the residual transform standard deviation of the 
frames cannot be obtained before encoding, this algorithm 
estimates the current frame ( sdσ ) by using the simple 

arithmetic mean of the first five frames ( sdσ ). 
 
3.2.2 Low-attention CU 
For the low-attention CUs, the Lagrange multiplier is 
adjusted on the basis of the coefficient of visual attention. In 
the DCT quantization process, a large quantization step is 
used for the low-attention CU. That is, coarse quantification 
is used for the high-frequency coefficient.  

In the encoding process, frame I is referenced by the 
subsequent frames. If the coding distortion of the frame I 
image is large, then the quality of the subsequent coding 
frames will be affected seriously. Therefore, if the current 
algorithm is working on frame I, the correction factor (P) 
will be 1.0. On the basis of visual attention, the Lagrange 
perception correction factor (Perception Factor) is shown in 
Eq. (14). 
 

1.0 _
i

type I Slice
P

a Attention b other
=⎧

= ⎨
× +⎩

           (14) 

 
where type indicates the type of the current encoding frame, 
I_Slice represents frame I, a and b are the adjustment 
parameters. Tests show that the rate distortion is optimal 
when a = –1.6 and b = 2.6. 

Therefore, the rate-distortion function based on visual 
attention is corrected as follows: 
 

SSE i SSEJ D P Rλ= + × ×                                         (15) 
 

( 12) 32 QPSSEλ β −= ×                                                (16) 
 

where J represents the rate distortion cost, SSED  stands for 

the distortion of the image, SSEλ  is the Lagrange multiplier 
in the original algorithm, and R indicates the BR of the 
current CU. The Lagrange multiplier is defined as a function 
of the quantization parameter, and β has a constant value of 
0.85. 
 

new i SSEPλ λ= ×                                                      (17) 
 
Eq. (17) is the Lagrange multiplier of the proposed 
algorithm. The changed QP value for the low-attention 
coding block is shown in Eq. (18). 
 

23 lognew org iQP QP QP PΔ = − = ×                        (18) 
 
where QPΔ  indicates the change value of the quantization 
parameter, newQP  represents the quantization parameter, 
which is corrected by the proposed algorithm, and orgQP  is 
the original quantization parameter. In the study, we use the 
high-quantization parameter to sample the low-attention 
coding block, filter part of the high-frequency components, 
and adjust the BR resource allocation. On the premise of 
guaranteeing subjective quality, the bit stream is reduced 
greatly. 
 
 
4. Result Analysis and Discussion 
 
The optimized algorithm was integrated into HM16.6 to 
verify its validity. The performance of the algorithm was 
compared with that of the original algorithm at low-delay 
mode, which was configured in the “encoder_intra_main” 
file. The two algorithms were compared in terms of coding 
rate and time. The platform configurations for the 
experimental test were as follows: Intel Core i5 processors, 
2.30GHZ CPU clock speed, 6GB memory, 64-bit Windows 
7 operating system, and Microsoft Visual Studio 2010IDE. 
The experiment adopted four standard-resolution YUV test 
sequences, namely, ElephantsDream_704×576, 
BigBuckBunny_1024×768, ElephantsDream_1920×1080, 
and BigBuckBunny_352×288, which were provided by the 
Joint Collaborative Team on Video Coding (JCT-VC). The 
coding performance was measured in terms of BR and peak 
signal-to-noise ratio (PSNR). The encoding complexity was 
measured in terms of encoding time (ET). The evaluation 
metrics that the algorithm contrasted with the original 
coding algorithm for HM16.6 were as follows: the increment 
of PSNR ( ( )PSNR YΔ ), increment of coding BR ( BRΔ ), and 
increment of ET ( ETΔ ) [24]. These metrics are expressed 
as follows: 
 

16.6( ) ( ) ( )P HMPSNR Y PSNR Y PSNR YΔ = −           (19) 
 

16.6

16.6

100%P HM

HM

B BRB
BR
−

Δ = ×                                 (20) 

 
16.6

16.6

100%P HM
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ET ETET
ET
−

Δ = ×                             (21) 
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where ( )PPSNR Y ,  pBR , and pET  are the PSNR, BR, and 
ET, respectively, of the luminance component of the fast-
speed division algorithm, which is proposed by this study. 

16.6( )HMPSNR Y , 16.6HMBR , and 16.6HMET  are the PSNR, BR, 
and ET, respectively, of the original HM16.6 algorithm. 

Fig. 2 shows the overall comparison chart of the 2282th 
frame in the video sequences of BigBuckBunny, in which 
the red box contains the high-attention area and the black 
box contains the low-attention area. Fig. (a) shows the result 
of the frame that was encoded by the original HEVC codec, 
whereas Fig. (b) shows the result of the frame that applied 
the proposed algorithm. Tests show that the visual 
perception quality using the algorithm was not significantly 
changed. 

Fig. 3 shows the details of the high-attention area, where 
Fig. (a) shows the result of the frame that used the original 
HEVC algorithm and Fig. (b) shows the result of the frame 
that used the proposed algorithm. Results show that the 
image quality was almost unchanged in the high-attention 
area. 

Fig. 4 shows the details of the low-attention area, where 
Fig. (a) shows the result of the frame that used the original 
HEVC algorithm and Fig. (b) shows the result of the frame 
that used the proposed algorithm. By contrast, more 
distortions are observed in the low-attention areas when we 
used the proposed algorithm. Notably, this finding did not 
affect the overall perception quality, and the BR was 
reduced effectively. 

Table 1 compares the performances of the proposed 
algorithm and the HM16.6 algorithm. Compared with the 
original HM16.6 encoding algorithm in terms of overall 
coding efficiency, the encoding BR was increased by an 
average of 30.33%, the ET was increased by an average of 
0.75%, and the fluctuation range of the PSNR was reduced 
by only 0.11 dB by the proposed algorithm. In this study, an 
adaptive coding algorithm based on visual attention degree 
was used to adjust the coding BR resource allocation in 
different-attention areas by introducing an attention 
algorithm with low computational complexity and can 
effectively decrease coding BR 

 

 
 

(a)                                                (b) 
(a) Original coding results. (b) Proposed coding results 

Fig. 2. The overall comparison chart of the 2282th BigBuckBunny frame.  

 
(a)                            (b) 

(a) Original coding results. (b) Proposed coding results 
Fig. 3. Comparison of details of high attention area.  

 

 
(a)                                           (b) 

(a) Original coding results. (b) Proposed coding results 
Fig. 4. Comparison of details of low attention area.  
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Table 1. Comparison of the performance 
 

Test sequence Resolution ( )PSNR YΔ (dB) ETΔ (%) BRΔ  (%) 

ElephantsDream 1920×1080 -0.09 0.61 -32.63 
704×576 -0.12 0.78 -29.17 

BigBuckBunny 1024×768 -0.09 0.72 -30.58 
352×288 -0.13 0.87 -28.94 

Average - -0.11 0.75 -30.33 

5. Conclusions 
 
A novel method based on visual attention was developed to 
adjust the coding rate allocation of different-visual-attention 
CUs and encode animated 3D videos effectively. A series of 
video sequences were analyzed to compare the coding 
efficiency of the traditional and proposed algorithms. The 
following conclusions could be drawn:  

(1) The GPM can be used to calculate the motion vector 
of the image. In addition, the extraction of the foreground 
demonstrates strong robustness because the characteristics of 
adjacent frames are considered. 

(2) CFN ignores the texture features of the image when 
calculating the CF to obtain fine effects. Furthermore, tests 
show that among the many factors that affect human visual 
attention, MF is the most prominent but contrast is the least. 

(3) The standard deviation of the DCT residual integer 
transform can stably represent the transform degree of the 
video texture that can adjust the relationship between the 
coding rate and the quantization parameter in high-attention 
CUs. The coefficient of attention can correct the Lagrange 
multiplier, and the correction factor of frame I is 1 because 

frame I will be referred to by subsequent frames in the low-
attention CU. 

This study focuses on the visual characteristics of human 
eyes, which are applied to the proposed algorithm, thus 
improving coding performance. However, the HVS is a 
complex system, and the attention model does not fully 
consider the factors that affect visual perception, such as 
masking effects, user preference, and other visual–
psychological factors, which affect the accuracy of attention 
calculation. These influencing factors should be considered 
in the future. 
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