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Abstract 
 

This paper proposes a neural network controller using a new efficient optimisation algorithm for learning that is the 
Levenberg-Marquart Iterated Extended Kalman filter LM-IEKF. The trained neural network is applied to control a 
wheeled mobile robot for trajectory tracking problem. The proposed algorithm is compared to the standard extended 
Kalman filter and the back-propagation algorithms. Simulation and experimental results using MATLAB 7.1 and 
National Instrumentation mobile robot (starter kit 2.0) respectively show that in terms of mean squared errors, the 
proposed algorithm is superior to the extended Kalman filter and back-propagation. This indicates that Levenberg-
Marquart iterated extended Kalman filter based neural networks learning could be a good alternative in the artificial 
neural networks based applications for mobile robot trajectory tracking. 
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1. Introduction 
 
In recent years, intelligent mobile robots are the subject that 
has received large attention. It is a topic of great research 
concern arising from the possibility of real applications in 
many areas, such as manufacturing, aerospace, civil 
engineering, transportation, agriculture, military operations 
exploration, help for disabled, and medical surgery and in 
other areas of science and technology research [1]. These 
applications require mobile robots to have the ability to track 
a reference trajectory. Thus, the stable trajectory tracking 
control of mobile robots has attracted significant attention 
from researchers. 
 There are many recent studies that addressed the 
problem of mobile robot control, by suggesting kinematic-
based controllers for trajectory tracking problems, such as  
linear feedback control [2], backstepping control [3][4], 
time-varying feedback control [5], sliding mode control 
[6][7], but these algorithms have problems with complex 
trajectories, uncertainty and unlimited velocities. In response 
to these complex control issues, a number of advanced 
controllers have recently been proposed, typically artificial 
neural networks (ANNs) [8][9][10]. 
 The artificial neural network, in general, is a system of 
programs and data design that approximates the process of 
the human brain [11]. In over the last decade, neural 
networks have been used to solve the trajectory tracking 
control problem for a mobile robot. Several studies have 
proposed different architectures for neural networks control, 
but most of these researches have not focused on the neural 
network learning. The learning operation consists of finding 

the optimal synaptic weights and biases of the neural 
network, this can be solved with the common classical 
gradient descent used in the back-propagation training 
method. However, the gradient method usually behaves very 
slowly and is not assured to find the global minimum of the 
error function. These are the reasons for searching for the 
most effective methods of neural network training. 
 An effective tool for training neural networks in the last 
decades is the extended Kalman filter (EKF) [12][13], which 
has become popular as an algorithm for state and parameters 
estimation. This is because it is easy to implement and 
exhibit computationally efficient calculation which is 
especially useful for nonlinear systems and practical 
applications see [14]. There are many variables that affect 
EKF training algorithm performances. These variables are 
matrices that must be correctly initialized otherwise the EKF 
training algorithm can exhibit poor performance. These 
matrices are the estimation error covariance matrix  (P), the 
measurement covariance matrix (R), and the additional 
process noise matrix (Q) [14]. the iterative version of EKF is 
the iterative extended Kalman filter (IEKF), which improves 
the linearization of the extended Kalman filter by 
recursively, this version is powerful than the standard EKF 
for neural network training [15]. 
 Another algorithm has a better performance for training 
neural networks than EKF is Levenberg-Marquardt 
algorithm see [16]. The Levenberg-Marquardt method is a 
standard technique used to solve nonlinear least squares 
problems [17][18]. 
 A modification based on an optimisation viewpoint is 
done by including the Levenberg-Marquardt algorithm in the 
iterated extended Kalman filter [19]. The Levenberg-
Marquardt-iterated Kalman filter is made to include a 
diagonal damping matrix which could further speed up 
convergence, with results that exceed the performance of the 
IEKF state estimation in nonlinear systems. In the estimation 
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of parameters of neural networks, LM-IEKF is better than 
the EKF and IEKF, with the significant advantage that it 
does not need the calculation of the Jacobian of the neural 
network. 
 This paper presents the principle of neural network 
training method based on LM-IEKF, which serves as a better 
alternative to the classical methods back-propagation and 
standard EKF, and proposes a mobile robot trajectory 
tracking control using the LM-IEKF based neural network 
training algorithm. The effectiveness and efficiency of the 
proposed control approach are proved by simulation results 
and experimental tests. 
 The following sections are organised as follows: In 
Section 2, we describe the mobile robot kinematic model, 
Section 3 describes the neural network controller design. In 
Section 4, we detail the neural network training methods, 
whereas Section 5 and Section 6 present simulation and 
experimental results respectively, and finally, the conclusion 
is presented in section 7. 
 
 
2. Kinematic Model of Mobile Robot 
 
In this work, we consider a trajectory tracking control 
problem of the mobile robot as shown in Fig.1. 

 
Fig. 1. The error coordinates of WMR  
 
 
 The kinematics model (or equation of motion) of a 
wheeled mobile robot is given by  
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 Where x and y are coordinates of the centre of mobile 
robot gear, θ  is the angle that represents the orientation of 
the mobile robot,  v  and  w  are linear and angular velocities 
of the robot. 
 To consider a trajectory tracking problem, a reference 
trajectory should be generated as follow:  
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 The error coordinates represented by the world 
coordinates are 
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 In the view of moving coordinates, the error coordinates 
are transformed into: 
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3. Neural network controller design 
 
In this section, we propose two neural network controllers for 
mobile robot trajectory tracking as shown in figure.2. We 
assume that each neural network controller under 
consideration consists of two inputs i.e. 

 
xe  and 

  
!xe  for linear 

velocity,  ye  and   θe   for angular velocity (figure.3). 

 
Fig. 2. Neural network controllers for Mobile Robot Trajectory Tracking 
 
 
 The proposed architecture of neural network controllers is 
composed of three layered static neural networks (Fig. 3). 

The input layer contains two neurones, the hidden layer has 
seven neurones and one neurone in the output layer. 
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Fig. 3. The neural network's architecture  
 
 The activation function used for hidden layer in both 
neural controllers is tangent sigmoid function  
 

  
σ x( ) = 1

1+ e−x
        (5) 

 
 While pure linear function is employed in output layer 
 The neural networks with the training data sets are trained 
offline. During training, for each sample value, the error is 
calculated between the desired output and neural network 
output using the following equations. 
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 Where   n is the  number of neurones and 

 
out j( )  is  The 

output of each neurone in hidden layer, 
 
out k( )  is The output 

of each neurone of output layer, 
 
σ x( )  is  The activation 

function,  m  is The number of inputs, 
  
wi, j  is  The weight 

from input layer node  i  to hidden layer node j  , 
  
wj,k   : The 

weight from hidden layer node  j to output layer node,
 
bj  are 

the Biases of node  j  of hidden layer, bk  are the  Biases of a 
node  k  of output layer. 
 The error is then minimised using extended Kalman filter 
or Levenberg-Marquardt Iterated EKF algorithms. The 
algorithm minimises the error by updating the weights and 
biases of the neural networks. 
 
 
4. Training neural networks controllers  
 
Once the neural networks have been structured, they will be 
ready to be trained. To start this process the initial weights 

are chosen randomly. Then, the training or Learning begins 
using the Extended Kalman filter or Levenberg-Marquardt 
Iterated Extended Kalman filter. 
 
4.1 Extended Kalman filter 
The Kalman filter is an optimal estimator tool which is able 
to estimate both linear and non-linear systems [19]. The 
Kalman Filter can perform the estimation in the presence of 
noise in the system and sensors. When the systems are 
dynamic and non-linear, the use of the Extended Kalman 
Filters is applied through the linearization at each time step of 
the system. The discrete nonlinear system model is given by: 
 

  
Xk = f Xk−1( ) +ζ k−1  

  
 Yk = h Xk( ) + vk   

      (7)
 

 
 The first equation describes the state transition 

relationship, where 𝑋! is the state vector and    ζ k−1 ∈Rn  is 
the unknown random noise.  
 The second equation represents the nonlinear output 
model where 𝑣! is the white Gaussian measurement noise 
given by:  
 

  
vk =ℵ 0, Rk( ) . 

 
 The extended Kalman filter uses the Jacobian of the 
(nonlinear) functions appearing in the state transition 
equation, and the measurement equation, respectively 
 
ü the Jacobian matrix of partial derivatives of the system 

   f  with respect to  X   
ü  

  
A i, j⎡⎣ ⎤⎦

=
∂ f i⎡⎣ ⎤⎦
∂X j

X̂k−1,0( )        (8) 

 
ü the Jacobian matrix of partial derivatives of 

measurement  h with respect to  X   
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H i, j⎡⎣ ⎤⎦

=
∂h i⎡⎣ ⎤⎦
∂X j

X̂k ,0( )        (9) 

 
 The implementation of the extended Kalman algorithm is 
as follows: 
 
Ø the Kalman filter time update equations (or prediction) 
are given by[20]: 
 

   
!Xk  = f X̂ k−1  , 0( )      (10) 

 

  Pk
− = Ak Pk−1Ak

T +Qk−1           (11) 
 
 Where 𝑋! represents the predicted state and 𝑃!!the 
covariance matrix of the prediction error. 
 

Ø The  update equations of the Kalman filter (or 
correction) are given by: 

  
Kk  = Pk

−Hk
T Hk Pk

−Hk
T + R( )−1

 
 

  
X̂ k = X̂k

−  + Kk Zk − h X̂k
−  ,0( ) ( )

 

 
Pk = I − Kk Hk( )Pk

−      (12) 

 
With 𝐾! is the Kalman gain, 𝑋! is the estimated state at 

time 𝑘,  𝑃! is the covariance matrix of the estimation error 
and  𝑍! is the measurement. 
 For neural network training, the weights  w of the network 
are the states the Kalman filter attempts to estimate using all 
observed data. The discrete nonlinear system for neural 
network training process is shown in the equations 
below[21]:  
 

  wk+1 = wk +ξk      (13) 
 

  Zk+1 = h(wk+1,uk )+ vk     (14) 
 
where h(•) is the function of the neural network,  ζ k and  vk   
are the system and measurement artificial noises. These 
noises are assumed to be white Gaussian noises with zero 
mean and covariance matrices Q and  R  (learning rate) 
respectively.   Zk  is the output of the neural network,  uk  is 

the input vector and  wk is the state vector which includes all 
parameters of the neural network. Its dimension ns is 
determined by the number of inputs m, hidden neurones n 
and outputs ny :  
 

  
ns = m  n( ) + n + n  ny( ) + ny

  
 (15) 

 
 The algorithm of Kalman filter for training the neural 
network is summarised[21][22] below: 
  
State estimate propagation  

  ŵk
− = ŵk−1      (16) 

 

  Pk
− = Ak Pk−1Ak

T +Qk−1     (17) 

 
Kalman gains matrix 

  
Kk = Pk

−Hk
T Hk Pk

−Hk
T + Rk( )−1

   (18) 

 
State estimate update 

  ŵk = ŵk
− + Kk (Zk − h(ŵk

− ,0))    (19) 
 
Error covariance update 

  Pk = (I − Kk Hk )Pk
−     (20) 

 
4.2 Iterated extended Kalman filter (IEKF) 
The purpose of the iterated Kalman filter update [23] is to 
repeatedly calculate the measurement Jacobian each time 
linearizing about the most recent estimate   X̂ k . On the other 
hand, the EKF, the measurement Jacobian is linearized about 
the predicted state estimate   X̂ k . The iteration is initialized 
by choosing 
 

  X̂ i=0 = X̂k      (21) 
 

  Pi=0 = Pk      (22) 
 
 The implementation of iterated Extended Kalman filter 
algorithm is as follows [23][15]: 
 

  
Ki  = Pk

−Hi
T HiPk

−Hi
T + R( )−1

   (23) 

 

  
X̂ i+1 =  X̂ i + Ki Yk − h X̂i  ,0( )− Hi X̂k

− − X̂ i( ) ( )   (24) 

 

 
Pi = I − KiHi( )Pk

−     (25) 

 

  X̂ k = X̂ i+1      (26) 
 

 Pk = Pi       (27) 
 
 With   Ki  is the Kalman gain for each iteration i>0,   X̂ k  is 

the estimated state at time k and  Pk is the covariance matrix 
estimate. 
 For a single iteration, setting  i = 0 in  (23),(24) and (25) 
above, we obtain the conventional EKF update formulas in 
the past section 

The algorithm of Iterated Extended Kalman filter for 
training the neural network is summarised below with 
consideration of state equations as in (13) and (14) 

 
State estimate propagation  

  ŵk
− = ŵk−1      (28) 

 

  Pk
− = Ak Pk−1Ak

T +Qk−1     (29) 
 
Kalman gains matrix 

  
Ki  = Pk

−Hi
T HiPk

−Hi
T + R( )−1

   (30) 
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State estimate update 

  ŵi+1 = ŵi + Kk (Zk − h(ŵi ,0)− Hi(ŵk
− − ŵi ))   (31) 

 
Error covariance update 

 
Pi = I − KiHi( )Pk

−     (32) 

 

  ŵk = ŵi+1      (33) 
 

 Pk = Pi      
 (34) 

 
4.3 Levenberg-Marquardt Iterated Kalman filter 
4.3.1 Levenberg-Marquardt Algorithm 
The LMA is used in many software applications for solving 
nonlinear least squares problems. However, as for many 
algorithms, the objective function of least squares problem is 
then formulated as  
 

  
F(ρ) = 1

2
ri

2

i=1

n

∑
    

 (35) 

 

  
ri(x) = f xi;  ρ( ) – yi     (36) 

 
 Where n is the total number of data considered,  ri  is 

residual, and  yi  is y component of the data at
 
xi  and 

  ρ = [ρ1ρ2....ρm]  the model parameters vector and m are the 
total number of parameters. 
 The LMA finds only a local minimum, but not 
necessarily the global minimum. First Levenberg (1944) [24] 
suggested algorithm with the following search scheme to 
update model parameters vector:   ρ = [ρ1ρ2....ρm]  [17] 
 

  (Jk
T Jk + µI )δρk = −Jk

T (rk )     (37) 
 

  (Jk
T Jk + µI )δρk = −Jk

T ( y − ŷ)    (38) 
 
 Where   δρk  is the perturbation to the estimated 

parameters,  Jk  is the Jacobian matrix of residuals, and µ  is 
a damping factor. 
 Marquardt proposed update by replacing the identity 
matrix I in the original equation of levenberg, with the 
diagonal of  Jk

T Jk  resulting into Levenberg-Marquardt 
algorithm [25] 
 

  (Jk
T Jk + µdiag(Jk

T Jk ))δρk = −Jk
T ( y − ŷ)   (39) 

 

  ρk+1 = ρk +δρk      (40) 
 
Where large values of the algorithmic parameter µ  result 

in a gradient descent update and small values of µ  result in a 
Gauss-Newton update. If we get worse results in an 
approximation, we increase the value of µ . But if the 
solution is improved, we decrease the value of µ , the 
Levenberg-Marquardt method approximates the Gauss-

Newton method, and the solution typically accelerates to the 
local minimum. 

 
4.3.2 Levenberg-Marquardt Iterated Extended Kalman 

filter 
The LM-IEKF can be improved by replacing the diagonal 
damping with   µdiag(Jk

T Jk ) in (38) and by applying this to 
the following equations as in [19] 
 

  Xk+1 = Xk − (Jk
T Jk )−1Jk

T rk     (41) 
 
 By doing so, larger steps are made in directions where the 
gradient is small, further speeding up convergence, results in   
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Bi = diag J  J T( ) = diag HiRHi

T + Pk
−1( )   (44) 

 

  
Ki  = Pk

−Hi
T HiPk

−Hi
T + R( )−1

  
 (45) 

 

  X̂ k = X̂ i+1      (46) 
 

 Pk = Pi      
 (47) 

 
 There are two parameters in the LM-IEKF algorithm, 
which have to be set. The 

  Kk
i  is again to be found using the exact line search (41) 

because it influences the results. The selection of the 
damping parameter µ  is rather difficult because it 
influences the step-length too. Some discussion on this topic 
can be found in [19].  
 
4.3.3 Training neural networks with Levenberg-Marquardt 

Iterated EKF  
The algorithm of the Levenberg-Marquardt iterated Kalman 
filter for training the neural network is summarised below: 
 
State estimate propagation  
 

  ŵk
− = ŵk−1      (48) 

 

  

Pk
− = I − Pk−1 Pk−1 +

1
µ

Bi
−1⎛

⎝⎜
⎞
⎠⎟

−1⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Pk−1   (49) 

  
Bi = diag J  J T( ) = diag HiRHi

T + Pk
−1( )  

 (50) 

 
Kalman gains matrix 

  
Ki  = Pk

−Hi
T HiPk

−Hi
T + R( )−1

  
 (51) 

State estimate update 
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ŵi+1 = ŵk−1 + Ki

Zk − h ŵi  ,0( )− Hiŵi( )−
−µ I − KiHi( )Pk

−Bi
−1ŵi

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (52) 

 
Error covariance update 

 
Pi = I − KiHi( )Pk

−     (53) 

 

  ŵk = ŵi+1      (54) 
 

 Pk = Pi       (55) 
 

 
5. Simulation results 
 
This section presents numerical results for trajectory 
tracking control of a wheeled mobile robot using the trained 
neural networks. The simulation was done under MATLAB 
to demonstrate the effectiveness of the proposed training 
algorithms.  
 For the neural networks, we have 7 neurones in the 
hidden layer, 2 neurones in the input layer and a neurone in 
the output layer for each controller. 
 
𝑛 =  7 : The number of neurons in hidden layer 
𝑚 =  2: The number of neurons in input layer  
𝑛𝑦 =  1 : The number of neurons in output layer 
 
The number of training parameters is then given by: 
 

  
ns = m  n( ) + n + n  ny( ) + ny = 29     

 
which is the total number of weights and biases to estimate. 
 The initial state and initial state and error covariance 
matrix are given by: 
 

  
X̂0 = ŵ0

i, j ; ŵ0
j,k  ;b̂

0
j ;b̂

0
k

⎡
⎣

⎤
⎦ = randn ns,1( )   

 

  
P0 = 1000 eye ns,ns( )   

 
 The noises covariance matrices are given as follow:    
 

  
Q = 0.001 eye ns,ns( )   

 
  R = 1000   
 
 To obtain a good estimation of weights and biases with 
Levenberg-Marquardt Iterated EKF, we train the two neural 
networks for a different number of updating iterations. 
Table.1 resumes the results obtained. These results show that 
7 iterations have small RMS errors; this number is fixed for 
all simulation and experimental results. 
 
Table.1 LMIEKF RMS training errors 

ANNs 3 iterations 5 iterations 7 iterations 
ANN1 0.4118 0.3581 0.2530 
ANN2 0.1133 0.1070 0.1048 

 
 
 In the training phase, figures 4 and 5 shows the results of 
the trained neural network for an angular velocity controller 

with LM-IEKF and EKF respectively, the RMS training 
errors for both velocity controllers are represented in the 
table. 2. These results show that the LM-IEKF has a good 
performance to better estimate the parameters of neural 
networks than EKF 

 
Fig. 4. Neural network training with LM-IEKF 

 
Fig. 5 Neural network training with EKF 
 
Table. 2. Training RMSE 
Training method 𝒗 𝒘 

EKF 0.6914 0.2330 
LM-IEKF 0.2530 0.1048 

 
 Figures 6-8 shows the mobile robot trajectory tracking 
for different reference trajectories: sinusoidal, lemniscate, 
circular respectively, where the green line represents the 
reference trajectory, the red and black are the real trajectory 
with a neural network trained with EKF and LM-IEKF 
respectively. These two methods are also compared with 
neural networks trained with LMBP represented with a 
magenta line. 

 
Fig. 6. Tracking response of a mobile robot with NN controllers for 
sinusoidal trajectory with initial position 
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Fig. 7 Tracking response of a mobile robot with  NN controllers for 
lemniscate trajectory 

  
X0 = 0;−4;π / 4⎡⎣ ⎤⎦   

 

 
Fig. 8 Tracking response of a mobile robot with NN controllers for 
Circular trajectory 

  
X0 = 0;−5;0⎡⎣ ⎤⎦  

 
 
 These results show that the robot has tracked effectively 
any reference trajectory. The comparative results of each 
method of training the neural network are shown in table 3, 
this table represents the RMS errors in x, y and theta for 
each trajectory and for each training method, the important 
remark is that the robot controlled using neural network 
trained with LM-IEKF has tracked the reference trajectory 
with the minimum RMSE than neural network control 
trained with EKF or LMBP. 
 
Table. 3 RMS errors between reference and real trajectory 

 
trajectory 

 
RMS 
error 

Methods 
EKF LM-

IEKF 
LMBP 

 
Fig .6 

RMSE in 
x 

0.0755 0.0640 0.2469 

RMSE in 
y 

0.3585 0.3567 0.3941 

RMSE in 
𝜃 

0.2506 0.2491 0.2515 

 
Fig .7 

RMSE in 
x 

0.1971 0.1523 0.2467 

RMSE in 
y 

0.2924 0.2849 0.5705 

RMSE in 
𝜃 

0.6574 0.5391 0.7866 

 RMSE in 0.3791 0.2939 0.3944 

Fig .8 x 
RMSE in 

y 
0.3940 0.3670 0.6616 

RMSE in 
𝜃 

0.3153 0.2136 0.2223 

 
 All simulation results show clearly that the LM-IEKF 
training algorithm outperforms the other algorithms in 
estimating optimal weights and biases of neural network 
controllers. 
 
 
6. Experimental results 
 
In this section, we use experimental results to compare the 
proposed Levenberg-Marquardt-IEKF method with the EKF 
method for neural network training. A practical photograph 
of the experimental equipment for the differential driving 
mobile robot system is depicted in Figure. 11. All the 
experimental results are carried out via LabVIEW 2013 in an 
i3 core personal computer (PC). The vehicle used in the 
experiments is the starter kit 2.0 mobile robot, manufactured 
by the National Instrumentation.  
 

 
Fig. 11. NI starter kit 2.0 mobile robot   
 
 Figure11 shows the actual mobile robot following the 
desired path where the initial pose for the NI mobile robot 
starts at position (0, 0) meter and orientation π/2 radian and 
the desired path starts at position (1,1, π/2). 
 Figure12 shows that the trajectory of the real NI mobile 
robot controlled by neural networks trained with the LM-
IEKF algorithm is more close to the reference trajectory than 
the trajectory obtained when the neural networks are trained 
with EKF algorithm. 

 
Fig. 12. Tracking response of NI mobile robot with an NN controller  
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 Table 4 represent the experimental RMSE of coordinates 
(x,y) and the orientation.  This result shows that the neural 
network trained with LM-IEKF has better performance to 
estimate the parameters of the neural network than the 
extended Kalman filter. 
 
Table 4 Experimental RMS errors  

method RMSE in x RMSE in y RMSE in 
theta 

EKF 0.2463 0.3912 0.5554 
LM-IEKF 0.1828 0.2457 0.4371 

 
 
7. Conclusion 
 
In this study, we design a neural network feedback controller 
for unicycle-type nonholonomic mobile robots. The 

proposed controller consists of two neural networks,  each 
one has two inputs (position errors of wheels) and one 
output corresponding to each velocity. They are trained off-
line with a standard extended Kalman filter and Levenberg-
Marquardt Iterated-EKF.  We found that a neural network 
trained with the proposed Levenberg-Marquardt-Iterated 
EKF shows better results than the NN trained with the EKF 
algorithm. Simulation and experimental results demonstrate 
the efficiency and the effectiveness of neural networks 
controllers trained with the Marquardt-Iterated-EKF 
algorithm for the mobile robot trajectory tracking problem. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  
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