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Abstract 
 

Shearlet transform has been widely applied in related fields due to its admirable properties in image approximation. 
Image fusion method based on accelerated non-negative matrix factorization (ANMF) and expanded energy of Laplace 
(EEOL) rules was proposed in this study to integrate the complementary information of medical images with multiple 
modalities and improve the accuracy of clinical diagnosis and therapy. First, the registered medical images were 
decomposed into low- and high-frequency sub-band coefficients in shearlet domain. Then, the ANMF rule was used in 
merging low-frequency coefficients. Next, the visual-contrast-based EEOL rule was adopted in extracting details of 
source images from high-frequency coefficients. Finally, the ultimate fused image was reconstructed by applying inverse 
shearlet transform. Experimental results reveal that aside from visual effect, the proposed method achieves the best in 
three of five criteria and the run time is reduced by 29.21% compared with a method based on non-subsampled contourlet 
transform (NSCT) in computed tomography (CT)–magnetic resonance imaging (MRI) fusion. Moreover, the proposed 
method takes the first place in four of five criteria with run time reduced by 48.32% and 24.55% compared with two 
shearlet-based methods in a MRI–positron emission tomography (PET) case. This study indicates that the proposed 
method is superior to the selected approaches in visual and statistical evaluation, which is conducive to clinical practice 
of medical image fusion. 
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1. Introduction 
 
As a branch of information fusion, medical image fusion 
aims to address medical problems reflected through images 
of multiple modalities by integrating information with 
respect to the human body’s similar anatomical position, 
cells, and organs. Corresponding images are often used for 
diagnosing or assessing certain human organs or tissues 
given that different imaging devices employ different 
sensors or imaging principles. Generally, medical images 
encompass morphological, structural, and functional images 
[1]. In clinical practice, morphological images are often used 
to recognize changes of cell shape, structural images are 
usually applied in identifying bones or soft tissues, and 
functional images can provide abundant information on 
human metabolism. Thus, a fused image, which combines 
the information of multiple modality medical images, 
enables accurate localization and recognition for 
abnormalities and provides effective imaging reference in 
disease diagnosing and therapy [2][3][4]. 

In recent years, medical image fusion technology has 
been widely used in disease diagnosis, defect analysis, 
historical archiving, and judicial authentication. The 
framework for fusion, imaging modality, and certain organ 

are the three basic elements of studies on medical image 
fusion [5]. To date, few reports or studies have addressed the 
optimal combination of the aforementioned three factors due 
to the physical, even mental, differences for observers and 
diverse mathematical framework. Hence, developing an 
optimal fusion framework is difficult for a specific image 
modality or organ.  

Based on the above analysis, this study discusses the 
process of medical image fusion under shearlet framework, 
in which two improved rules for coefficients fusion are 
adopted to optimize image quality and time consumption. 
Subsequently, the validity of the proposed method is 
evaluated and advantages are summarized. 
 
 
2. State of the art 
 
To date, domestic and foreign scholars have investigated 
medical image fusion, which is considered to be composed 
of the space-based and multiscale-based methods. The 
former has a simple structure to calculate and has been 
regarded as the mainstream of medical image fusion in 
earlier stage. Space-based methods include weighted linear, 
principal component analysis (PCA), multiplicative fusion, 
and neural network. However, space-based method obtains 
rough result in expressing detailed information of medical 
images. Therefore, multiscale-based method is gaining 
popularity in the field of image fusion in recent years. The 
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commonly used multiscale-based methods include wavelet 
transform (WT), contourlet transform, non-subsampled 
contourlet transform (NSCT), and shearlet transform. 

Scholars have conducted considerable research to apply 
multiscale-based methods in medical image fusion and 
optimize the performance of algorithms. In 2014, Singh et al. 
proposed a method based on Daubechies complex wavelets, 
which was approximately shift invariant and provided phase 
information; the method has been proven better compared 
with other methods [6]. However, being the most typical 
multiscale decomposition tool, wavelets fail to capture linear 
singularity, continuous edge, and detail of medical images 
[7][8]. Darwish et al. presented an image fusion system 
based on contourlet transform and multilevel fuzzy 
reasoning technique, in which the fuzzy fusion rules were 
applied to low- and high-frequency coefficient 
approximation; the results showed the effectivity of the 
proposed method for applications in brain image fusion [9]. 
Clearly, contourlet transform can obtain multi-directional 
high-frequency information and capture the edge detail of 
images, although it is not shift-invariant. As a result, clear 
textures and smooth edges are unavailable when positioning 
contour or sketching region and pseudo-Gibbs distortion 
may occur [10][11]. Bhateja et al. introduced a two-stage 
multimodal fusion framework using the combination of 
stationary WT and NSCT domains for computed 
tomography (CT), magnetic resonance imaging (MRI), and 
positron emission tomography (PET) images; they also 
depicted the visual and quantitative superiority of the 
obtained fusion results [12]. The down-sampling step is 
removed in NSCT to avoid drawbacks in contourlets. 
However, NSCT requires high computational complexity 
and a considerable amount of time when managing actual 
medical images, which limits further development [13][14]. 

In 2008, Guo constructed shearlets based on a special 
form of synthetic dilation of the affine structure; shearlet is a 
novel multiscale geometric analysis tool that overcomes 
wavelets’ shortcomings, which is a nearly optimal sparse 
representation for multi-dimensional function [15]. Shearlets 
generate mother function by dilations, translations, and 
rotations with its simplified mathematical structure and 
associate the multi-resolution analysis with the application 
[16][17][18]. Compared with other multiscale 
decomposition tools, shearlets not only enjoy similar 
nonlinear order of error as curvelets do when approximating 
the optimum but also subdivide layer by layer in frequency 
domain [19][20]. In addition, both the number of directions 
for the decomposition and the size of the support basis are 
unlimited, hence, shearlets have higher efficiency in 
computation compared with contourlets [21][22]. Zhou et al. 
evaluated the performance of shearlet-based texture features 
of breast tumors in ultrasound images with significant results 
that have outperformed other methods, especially in detail 
acquisition phase [23]. Geng et al. proposed a fusion method 
based on shearlets and pulse-coupled neural network 
(PCNN), which not only extracts a considerable amount of 
visual information but also avoids the occurrence of artifacts 
[4]. Wang et al. developed a multimodal medical image 
fusion method in shift-invariant shearlet transform domain, 
in which added singularities are preserved and added 
functional details are transferred [24]. 

In the practice of medical image fusion, the quality of the 
fusion result mainly depends on the adopted fusion 
framework and rules. Based on admirable features of multi-
resolution analysis, shearlets are used in conducting 
multiscale and multi-directional decomposition on original 

medical images. For the low-frequency coefficients 
accounting for the contour differences of organs or tissues, 
the accelerated non-negative matrix factorization (ANMF) 
rule is adopted. Moreover, for the high-frequency 
coefficients representing regional energy details, the 
expanded energy of Laplace (EEOL) rule is employed. This 
study analyzes the operating characteristics of shearlets and 
the fusion rules, and designates fusion steps of the proposed 
method based on “ANMF+EEOL” rules for multiple 
modalities of medical image fusion under shearlets domain, 
and illustrates the experimental result. Furthermore, this 
study aims to explore the working mechanism of shearlets 
precisely, verify the performance of the proposed fusion 
rules, and offer reference for further development and 
improvement of medical image fusion. 

The remainder of this study is structured as follows. 
Section 3 discusses the course of fusion, as well as the 
fusion rules for low- and high-frequency coefficients. 
Section 4 presents the results of the experiments for multiple 
modalities of medical image fusion, followed by the 
conclusions in Section 5. 
 
 
3. Methodology 

 
3.1 Shearlet transform 
In applied mathematics, shearlets are a multiscale 
framework, which allows efficient encoding of anisotropic 
features in multivariate problem classes. Similar to wavelets, 
shearlets arise from the affine group and allow a unified 
treatment of the continuum and digital situation leading to 
faithful implementations. In Reference [25], shearlets are 
expressed as: 
 

  
Ψa,s,t x( ) = a−3/4Ψ Ss
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means to change the orientation. Finally, shearlets , ,Ψ ( )a s t x  
can be constructed by translation. 
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By the supporting conditions of 1Ψ̂  and 2Ψ̂ , the function 

, ,Ψ j l k
 has frequency support as follows: 

 
(0) 2 -1 2 -4
, , 1 2 1

2 -4 2 -1 - -2

1

ˆsuppΨ {( , ) : [-2 , -2 ]

[-2 , -2 ],| + 2 | 2 }

j j
j l k

j j j j

ξ ξ ξ
ξ l
ξ

⊂ ∈ ∪

≤                     (4)
 

That is, each element of 
, ,Ψ̂ j l k

 is supported by a pair of 

trapezoids, with a size of approximately 22 2j j×  and aligns 
along the lines of slope -2 jl , as shown in Fig. 1. 

22j
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Fig. 1. Trapezoidal frequency support of shearlets 
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The collection of functions { }(0) - -

0 0Ψ̂ ( )j lξA B  constitute 

parts of 0D , as shown in Fig. 2. 

ξ1

ξ2

 
Fig. 2. Frequency tiling of the shearlet system 
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forms a Parseval frame for function 2

0( )L D ∨ =         
2{ f L∈ 0

ˆ:supp }f D⊂ . 
 
3.2 Fusion steps based on shearlet transform 
First, the geometrically registered source images need to be 
decomposed into a low-frequency sub-band 

=0( , )cS x y  , and 
a series of high-frequency sub-bands 

, ( , )c kS x y  by 

performing shearlet transform. With these, =1,2, ,c N⋅ ⋅ ⋅  
represents the thc  high-frequency sub-band of the image, 

1,2, ,k M= ⋅ ⋅ ⋅  is the parameter for directions, whereas ( , )x y  
indicates the position of shearlets coefficients, by doing so, 
the multiscale and multi-directional decomposition on 
source images can be fulfilled. Next, the low frequency and 
high frequency coefficients are integrated with specific rules, 
respectively. Last, the fused image is produced by 
employing inverse shearlet transform. The detailed steps of 
image fusion under shearlets are as follows: 
 
(a)    Input: Registered source images 1f  and 2f . 
(b)  Decompose the original images into scale images as 

0 1, , , NT T T⋅⋅⋅  by conducting non-subsampled pyramidal 
transform, where 0T  denotes the rough scale image, 
whereas 1, , NT T⋅ ⋅ ⋅  represent the subdivided images at 
scale level from 1 to N . 

(c) Transform 1, , NT T⋅ ⋅ ⋅ to 1, , NFT FT⋅⋅⋅  using 2D fast Fourier 
transform (FFT) in frequency domain. 

(d)  Input 1, , NFT FT⋅⋅⋅  into the shear filter groups ,c kSF . The 

high-frequency coefficients ,c kF  and the high-

frequency sub-band coefficients , ( , )c kS x y  are obtained 
using multi-directional decomposition and inverse 2D 
FFT, respectively. 

(e)  The low- and high-frequency coefficients of the fused 
image can be obtained by using the corresponding 
fusion rules. 

(f)  Output: Fused image is generated by employing inverse 
shearlet transform. 

 
3.3 Fusion course of the proposed method 
Given that 1f  and 2f  denote two source images, F  is the 
fused image. Fig. 3 shows the fusion process with fusion 
steps. 
 

Image f2

Low-frequency 
coefficients

High-frequency sub-
bands coefficients

Shearlets

ShearletsImage f1

Low-frequency 
coefficients

High-frequency sub-
bands coefficients

EEOL

ANMF

Inverse 
Shearlets Image F

 
Fig. 3. Flowchart of fusion algorithm 
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(1) Multiscale and multi-directional decompositions are 
conducted for source images 1f  and 2f  by adopting shearlet 
to obtain low-frequency sub-band coefficients 

{ }1 2

0 0
( , ), ( , )f f

i iS x y S x y  and high-frequency sub-band 

coefficients { }1 2
, ,( , ), ( , )f f
i l i lS x y S x y . 

(2) ANMF method [22] is used to achieve low-frequency 
sub-band coefficients 

0
( , )F

iS x y , whereas EEOL is utilized to 

obtain high-frequency sub-band coefficients 
, ( , )
F
i lS x y  for 

the fused image. 
(3) Inverse shearlet transform is employed on the fused 

coefficients
0
( , )F

iS x y and
, ( , )
F
i lS x y , which results in image F . 

 
3.4 Fusion rule for low-frequency sub-band coefficients 
In 1999, Lee and Seung proposed the non-negative matrix 
factorization (NMF), a novel method published in Nature 
[26]. In this theory, all elements are constrained to be non-
negative and only purely additive operations are permitted 
on components. Meanwhile, decomposed components are all 
required to be non-negative as well; consequently, the 
dimension of the original matrix is reduced. Generally, for a 
given non-negative matrix 

( )n mV ×
, NMF attempts to find two 

non-negative matrices 
( )n rW ×

 and 
( )r mH ×

, which satisfy 

V WH≈ . 
To solve NMF problem, Euclidean distance and 

Kullback–Liebler divergence listed in Eqs. (7) and (8) are 
often used as objective functions. 

 
2 2

, ,,
( , ) = - = [ - ( ) ]i j i ji j
J W H V WH V WH∑              (7) 

 
,

, , ,
, ,

( , ) = [ log - + ( ) ]
( )

n
i j

i j i j i j
i j i j

V
J W H V V WH

WH∑            (8) 

 
Calculating the optimal values of W  and H  makes the 

reconstruction error between V  and WH  minimum; thus, 
solving ANMF can be cast into two optimization problems 
described as: 

 
+ ( - )T T

ij ij j ij ijH H α η W V W WH←                        (9) 
 

+ ( - )T T
ij ij j ij ijW W β ς VH WHH←                      (10) 

 
where ijη  and ijς  are small positive numbers, 

( 1,2, , )jα j n= ⋅ ⋅ ⋅  and ( 1,2, , )i i mβ = ⋅⋅⋅  are step-length 

parameters. As discussed in Reference [22], ANMF 
converges faster and can reach optimum with fewer 
iterations compared with the classical NMF. 

The process of imaging acquisition often introduces 
various noises arising from sensors’ nature or influences 
posed by the outside world; hence, an observed image is 
actually the composite of real image and noise. In ANMF 
algorithm, we can assume that = +V WH ε , where ε  
denotes for the noise that will be convergent by using 
iterative updating rule; this description is inclined with the 
process of standard image fusion [27][28][29]. 

In ANMF theory, a part-based approximated 
representation of WH  from V  by iteration should be 
obtained, where columns of W  denote the value of feature 

basis r  and determines the dimension of feature subspace. 
Particularly, the implicit dimension of feature space for a 
given dataset is certain. In other words, when r  equals the 
actual dimension of the specific feature space, the basis of 
the feature space will be optimal. Therefore, when =1r , 
obtaining unique feature basis containing global features of 
the original data is possible. 

Based on aforementioned scenarios, ANMF is 
appropriate for image fusion. Given that 

1 2, , , kf f f⋅⋅⋅ , which 
is acquired from k  multi-sensors with the size of ×m n  and 
denotes observed images, then matrix V  with the size of 
×mn k  can be constructed by arranging the data from 
( 1,2, , )if i k= ⋅ ⋅ ⋅  into k  column vectors in a row-by-row 

element-wise manner.As a result, matrix V , which contains 
k column vectors

1 2, , , kv v v⋅ ⋅ ⋅ , represent each of the 
observations with the corresponding column. Let 
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1 2
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= [ , , , , , , , ,

       , , , ]
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i i i i i i
i n n

i i i T
m m mn

k k

v f f f f f f

f f f
V v f v f v f
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⎪
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                (11) 

 
The employment of ANMF on matrix V  with =1r  

obtains a unique feature basisW . And W  contains holistic 
features of k  images. When W is restored to the pixel-level 
of an original image, a new image is obtained, which has 
better quality than any individual modality source image. 

 
3.5 Fusion rule for high-frequency sub-band coefficients 
After shearlets decomposition, the directional sub-band 
coefficients exhibit detailed features of high-frequency 
components with respect to edge and texture. The fusion rule 
for high-frequency coefficients plays an important role in 
medical image fusion due to its clinical application. 
Moreover, contents of fused image must be inclined with 
those of source images as accurately as possible without any 
detail distortion that can cause clinical misjudgment. On the 
other hand, the fused image should be applicable for human 
eyes to identify the detailed texture, thereby achieving 
accurate diagnosis on lesions. Hence, the EEOL is adopted 
in high-frequency coefficient fusion. 

The energy of Laplace (EOL) reflects the local definition 
of an image. A greater EOL value results in clearer image. 
According to Reference [30], EOL is superior when 
evaluating image quality compared with classical criteria. In 
EOL, the Laplacian operator is used, and the location 
distribution of a given pixel and the eight adjacent neighbors 
of the pixel are fully considered. The traditional EOL is 
defined as follows: 

 
2= ( + )xx yy

x y
EOL L L∑∑                    (12) 

 
+ = - ( -1, -1) - 4 ( -1, )

- ( -1, +1) - 4 ( , -1) + 20 ( , )
-4 ( , +1) - ( +1, -1)
-4 ( +1, ) - ( +1, +1)

xx yyL L L x y L x y
L x y L x y L x y
L x y L x y
L x y L x y

           (13) 

 
where ( , )L x y is the pixel level at ( , )x y . 
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To enhance the correlation between diagonal pixels, and 
to avoid mutual interference posed by information from 
different orientations, EEOL is adopted, which is defined as: 

 
2( , ) = ( , )( ( + , + ))

a b
EEOL x y W a b ISOL x a y b∑∑       (14) 

 
where ( , )W a b denotes the window function with the size of 

3×3 and suffices the normalized feature ( , ) =1
a b

W a b∑∑  to 

enhance the functions of the pixel at the center of the 
window, as well as the related pixels along the edges. 
( , )W a b is set as 1/16 [1,2,1;2,4,2;1,2,1] . Moreover, ISOL is 

the improved sum of Laplace expressed as: 
 

( , ) = 8 ( , ) - 4 ( -1, ) - 4 ( +1, )

+ 8 ( , ) - 4 ( , -1) - 4 ( , +1)

+ 2 ( , ) - ( -1, +1) - ( +1, -1)

+ 2 ( , ) - ( -1, -1) - ( +1, +1)

ISOL x y L x y L x y L x y

L x y L x y L x y

L x y L x y L x y

L x y L x y L x y

 
            (15)

 

 
Then, the fusion rule for high-frequency directional sub-

band coefficients is defined as: 
 

1

1 2

2

,
,

,
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( , )  else

f
c k f fF
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 (16) 

 
where 1

, ( , )
f
c kS x y and 2

, ( , )
f
c kS x y are the thc sub-band 

coefficients of the source images 1f and 2f in direction k , 
respectively. 

1
( , )fEEOL x y and

2
( , )fEEOL x y denote the 

EEOL of 1f and 2f at ( , )x y , respectively. 
 
 

4 Result analysis and discussion 
 

To verify the effectiveness of the proposed fusion method, 
two sets of strictly registered medical images are selected for 
fusion experiments. For comparison, PCA, Laplacian 
pyramid (LP), discrete WT (DWT), NSCT-based methods, 
and the proposed “ANMF+EEOL” method are adopted in 
Experiment 1, whereas intensity–hue–saturation (IHS)-based 
method and the shearlet-based “PCNN+Average”, 
“NMF+neighborhood homogeneous measurement (NHM)” 
[22], and the proposed “ANMF+EEOL” methods are 
adopted in Experiment 2. All experiments are performed 
under the platform of AMD Athlon™ 64 X2 processor 2.61 
GHz with 2 GB RAM and Matlab R2010b. 

In Experiment 1, two medical CT and MRI images are 
used with sizes 256×256. The CT image is clear in 
anatomical structure showing and is sensitive to calcification 
but has poor contrast in soft tissue demonstration. The 
intensity of the MRI image is directly proportional to the 
amount of proton. Normal soft tissues, such as muscle, fat, 
white matter, and gray matter, can be clearly identified in the 
MRI image. In addition, tumors or other lesions can also be 
well-distinguished. In clinical practice, the fused image of 
CT and MRI functions complementarily and is beneficial to 
either of the single modality in medical diagnosis and 
treatment. 

The decomposition level for LP is 4. The basis for DWT 
is selected as “haar” and its decomposition level is 3. For 
NSCT, the scaling and directional filters are set as “9–7” and 

“pkva”, respectively; its decomposition level is 3, and its 
direction levels are 4, 3, and 2. For DWT and NSCT 
methods, the fusion rules for low- and high-frequency 
coefficients are selected as “average” and “maximum”, 
respectively. For the proposed method, the decomposition 
level of the shearlets is 3, the direction level in subdivision 
scale is set as 6, and the window size is 3×3. 

 

               
              (a)                                                      (b) 

               
              (c)                                                      (d) 

               
             (e)                                                      (f) 

 
                (g)   

Fig. 4. Fusion results of five different methods. (a) CT image, (b) MRI 
image, (c) Fused image based on PCA, (d) Fused image based on LP, (e) 
Fused image based on DWT, (f) Fused images based on NSCT, (g) 
Fused image based on the proposed method. 

 
Figs. 4(a) and 4(b) show the CT and MRI images, and 

Figs. 4(c)–4(g) show the fused images produced by PCA, LP, 
DWT, NSCT, and the proposed method, respectively. As 
shown from the fusion result in Fig. 4, all fused methods 
increase the amount of information but present a certain 
amount of differences. For example, PCA is a statistics-
based method that produces poor intensity; thus, Fig. 4(c) 
looks dim. Meanwhile, the other four approaches perform 
better in this aspect. In Fig. 4(d), the visual effect of textures 
for bone and soft tissue region is not as good as that of Fig. 
4(g). Figs. 4(e) and 4(f) introduce false information with 
obvious blurring effects and distortion along the margins of 
the images. Additionally, the pseudo-Gibbs phenomenon 
occurred in Fig. 4(f); however, the image looks brighter than 
those produced by DWT and the proposed method. From 
visual point of view, the amount of information of the image 
produced by NSCT is sufficient, and artifacts at the middle-
left portion in Fig. 4(f) can be easily found. Overall, the 
image produced by the proposed method has a natural trade-
off in brightness and contrast with added details transferred 
from source images. 
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Aside from subjective evaluation, objective criteria are 
also explored. Information entropy (IE), mutual information 
(MI), average grades (AG), spatial frequency (SF), standard 
deviation (SD), and time cost are selected in this context. 
Table 1 shows the objective evaluation results obtained from 
the fused images in Experiment 1, with optimal value 
highlighted in bold. From Table 1, the proposed method has 
advantages over the other approaches in IE, MI, and SF. The 
largest IE indicates that the proposed method has the most 
information obtained with the best fusion. MI is used to 
measure the correlation between the source and fused 
images; a larger MI indicates more information obtained 
from the source image. Thus, Fig. 4(g) is further correlated 
to source images compared with fused images produced by 
other methods. SF expresses the degree of activity for detail 
variation in spatial domain; a larger SF obtains better fused 
image. AG denotes the degree of the acquired detail and 
definition of the image; a larger AG results in better effect. 
The proposed method is slightly inferior to DWT. SD 
indicates the degree of deviation between the gray level of a 
pixel and the average of the fused image; richer detail 
variation creates larger SD with better image quality. From 
the above analysis, Fig. 4(g) achieves the best quality in 
three of five criteria; AG and SD are in the second place. 
Therefore, the statistics in Table 1 are inclined with the 
visual effects of Fig. 4. For time consumption, DWT does 
not have computational burden for multi-directional 
decomposition; thus, it takes the least time. However, the 
time cost of the proposed method decreased by 29.21% 
compared with the multiscale-based NSCT. 
 
Table 1. Performance comparison of five different fusion 
methods 

 PCA LP DWT NSCT Proposed method 
IE  4.190 6.016 5.476 6.132 6.203 
MI  3.861 3.080 2.916 5.386 5.390 
AG  0.032 0.054 0.054 0.053 0.054 
SF  16.425 19.671 18.624 18.130 19.876 
SD  1.152 1.415 1.326 1.758 1.453 

Time cost (s) 26.584 25.842 18.475 120.536 85.325 
 
In Experiment 2, four fusion methods are used, namely, 

the IHS method and the shearlet-based “PCNN+Average”, 
“NMF+NHM”, and the proposed “ANMF+EEOL” methods. 
Fig. 5(a) is the T1-weighted image. Fig. 5(b) is the PET 
image, which is mainly explored to detect the functional and 
metabolic changes of a disease. Theoretically, PET image 
can diagnose the cause of a disease earlier compared with 
CT and MRI images. Fig. 5(c) is the image based on IHS. 
Figs. 5 (d)–5(f) are the fused images produced by the 
shearlet-based “PCNN+Average”, “NMF+NHM”, and the 
proposed methods, respectively. Visually, the four fusion 
methods can extract features of source images and eject 
features into the fused images. Fig. 5(c) is comparable with 
water washed; thus, IHS-based method is inferior to other 
methods. The three shearlet-based methods resemble each 
other in overall sensation, with differences mainly reflected 
in high-frequency detail presentation. Specifically, 
“Average” is selected in high-frequency fusion; thus, it is the 
cerebral cortex in Fig. 5(d) is difficult to identify. Likewise, 
the “NHM” rule is applied to measure the similarity of 
corresponding neighborhoods for images to generate Fig. 5 
(e). Therefore, the caudate nucleus in Fig. 5(e) is clearer 
compared with that of other figures; however, the texture of 
the cortex in Fig. 5(e) is unclear compared with that of Fig. 
5(f). Therefore, the visual effect of the fused image created 
by the proposed method outperforms that of the other images. 

Moreover, Fig. 5(f) has richer information and possesses 
higher contrast. 

 

               
              (a)                                                      (b) 

               
             (c)                                                      (d) 

               
             (e)                                                      (f) 

Fig. 5. Fusion results of IHS and three shearlet-related methods. (a) 
MRI image, (b) PET image, (c) Fused image based on IHS, (d) Fused 
image based on “PCNN+Average”, (e) Fused image based on 
“NMF+NHM”, (f) Fused image based on the proposed method. 

 
Table 2. Performance comparison of IHS and three shearlet-
related fusion methods 

 IHS Shearlets 
PCNN+Average NMF+NHM Proposed method 

IE  16.154 16.271 16.310 16.338 
MI  6.487 6.725 6.738 6.868 
AG  0.064 0.069 0.067 0.071 
SF  20.087 21.688 21.845 21.761 
SD  1.805 1.825 1.832 1.841 

Time cost (s) 42.578 178.342 122.165 92.176 
 
A quantitative data analysis is also performed in this 

study. Table 2 lists the objective evaluation data of 
Experiment 2. From the table, the proposed method achieves 
the optimal value in IE, MI, AG, and SD but is only second 
best in SF. From objective evaluation, the proposed method 
works well and is consistent with the visual effect of the 
image in Fig. 5(f) for the MRI and PET fusion experiment. 
In terms of time consumption, the proposed method 
decreased by 48.32% and 24.55% when compared with the 
methods based on “PCNN+Average” and “NMF+NHM”, 
respectively. 

 
 

5. Conclusions 
 
To improve image quality and optimize run time of the 
algorithm in medical image fusion, shearlet transform was 
used as the research object, and a model based on 
“ANMF+EEOL” fusion rule was developed to evaluate the 
validity of the proposed method. Comparisons were 
conducted between the traditional and proposed methods. 
The main conclusions are drawn as follows: 

1) As a promising application in image processing, 
medical image fusion has been applied in clinical practice in 
recent years. Tens of fusion frameworks have been applied 
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to meet the needs of clinical diagnosis and treatment, which 
exhibit the great potential of shearlets.  

2) Fusion rules, such as “Maximum”, “Minimum”, and 
“Averaging” cannot accurately reflect details of image when 
used in medical image fusion; consequently, great 
uncertainty may occur in diagnosis. Moreover, employing 
PCNN- or NSCT-based methods intensifies computational 
complexity, which is adverse to the development of real-
time clinical operation. The proposed “ANMF+EEOL” 
fusion method reduces the time consumed in operation 
without losing detail. Therefore, the proposed method is 
superior to most space-domain-based methods and 
traditional transform-domain-based methods. 

3) The proposed method is superior to the selected 
multiscale fusion methods in subjective evaluation and 
objective criteria. Therefore, the proposed method is 
effective in CT–MRI and MRI–PET image fusion 
experiments. This method produces image with shorter time 
compared with the traditional transform-domain-based 
methods; thus, the proposed method is applicable as clinical 
algorithm in medical image fusion. 

With proven superiorities of the proposed method in 
image quality and time-saving improvement, the fusion 
method based on “ANMF+EEOL” rule under shearlet 
domain is proposed. Until now, the proposed method has not 
been applied to images with other modalities nor has been 
used in actual clinical practices. In most cases, clinical 
fusion is influenced by factors of imaging quality, 
registration level, and denoising rate. Likewise, the proposed 
method is limited to considering the ideal status; therefore, 
the influencing factors must be introduced in developing 
clinical fusion system for future work. 
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