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Abstract 
 

The use of the linear models for the study in the dynamic behaviour of the railway vehicles provides quality information 
regarding a series of basic phenomena of the vehicle dynamics. This paper intends to set forth the running conditions for 
which the linear models can be utilized during the simulations regarding the lateral dynamic behaviour of the railway 
vehicles.  This action relies on analyses that compare the results of the numerical simulations developed on the linear 
model of the vehicle with the ones corresponding to the non-linear model, which considers various characteristics of the 
track in correlation with the velocity regime. A good analogy is emphasized between the compared units, namely the 
lateral accelerations calculated in three reference points – at the carbody centre and above the bogies. 
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1. Introduction 

 
The study of the dynamic behaviour of the railway vehicles 
involves the use – as an investigation tool – of the numerical 
simulation codes developed on theoretical models of the 
vehicle and of the vehicle/track interaction [1, 2]. The 
numerical simulations are useful tools to estimate the 
dynamic behaviour of the railway, in terms of the running 
stability [3 - 6], safety, ride quality and ride comfort, track 
fatigue [7, 8], and to optimize its dynamic performance [9, 
10]. It is evident that the models associated with such studies 
call for a high degree of reliability and trustworthiness, as a 
series of important factors affecting the dynamic behaviour 
of the railway vehicle should be taken into account [11]. 
Moreover, in the present context, when the issue of ‚virtual 
homologation’ arises, its model should be an accurate 
representation of all the aspects having an impact upon the 
dynamic behaviour of the real vehicle [11 - 13]. 
 The complexity degree of the models used in the 
numerical simulations is generally determined as a function 
of the precision required from the results. The more complex 
the model, the closer to the reality the results, but it will be 
more difficult to derive some general conclusions regarding 
the basic phenomena of the vehicle dynamics. Quality and 
even quantity information can be obtained from less 
complex models.  
 The precision of the models for the study of the lateral 
dynamic behaviour of the railway vehicle depends a great 
deal on the modelling of the vehicle-track interaction 
conditions [14], which proves difficult due to the non-
linearity of the wheel-rail contact – of a geometric, elastic 
(the normal issue of the contact) and tribological (the 
tangential issue of the contact) nature. 

 The paper deals with the non-linearity of a tribological 
nature of the wheel-rail contact and, related to it, the issue of 
the model that needs to be adopted for the calculation of the 
wheel-rail creep forces. Reaching numerical results of a high 
accuracy regarding the stability or the dynamic performance 
of the vehicle implies the selection of non-linear models [15 
- 17] that often require long simulation times. For this 
reason, when selecting the model to calculate the creep 
forces, a reasonable compromise is turned to, between the 
accuracy of the results and the duration of the numerical 
simulations. An effective solution is Shen’s non-linear 
model [18] or Polach’s [19].  
 Despite of the above, there are still issues that can be 
studied by a linear model of the wheel-rail contact, based on 
which quality conclusions can be made in terms of the 
dynamic behaviour of the vehicle under various aspects [9, 
20 - 22]. For instance, a first quality evaluation of the 
vehicle stability can be conducted via the linear model. 
Thus, the stability of the vehicle balance position can be 
defined, based on the analysis of natural values in the matrix 
of the system of movement linear equations [20]. A series of 
basic properties of the stable regime of the forced lateral 
vibrations is still based on the linear model. Moreover, it is 
possible to have a set of analyses related to the influence of 
the velocity or the suspension parameters upon the level of 
vibrations in the vehicle [21].   
 The interest for using the linear model of the wheel-rail 
contact is linked to the advantages thus derived. It is about 
simplifications in designing the applications for the 
numerical simulation of the dynamic behaviour of the 
vehicle and significantly lower calculation times, compared 
to the ones in the applications based on a non-linear model 
of the wheel-rail contact. On the other hand, the results 
coming from the linear model are a reference for the 
verification of the non-linear model.  
 As a result from the above facts, is it interesting to 
determine the applicability limits of the linear model in the 
study of the lateral dynamic behaviour of the railway 

 
JOURNAL OF 
Engineering Science and 
Technology Review 
 

 www.jestr.org 
 

Jestr 

______________ 
*E-mail address: madalinadumitriu@yahoo.com 

ISSN: 1791-2377 © 2017 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.  
doi:10.25103/jestr.104.19 

 



Mădălina Dumitriu/Journal of Engineering Science and Technology Review 10 (4) (2017) 154-169 

 155 

vehicles. This issue comes naturally, as a consequence of the 
fact that the applicability domain of the linear model has to 
comply with meeting certain basic requirements associated 
with the presumption that the vehicle has a stable running. 
What this represents is that the wheelsets perform small 
oscillations with respect to the track axis, without the 
clearance consumption on the track and the velocity is 
smaller than the critical speed.  On the other hand, the linear 
model in this paper to calculate the wheel-rail contact forces 
is based on Kalker theory [23], which means to verify the 
condition that the creepage in the wheel-rail contact points 
be sufficiently low (1 – 1.5 ‰). 
 This paper intends to establish the limits of the 
applicability domain of the linear models in the study of the 
lateral dynamic behaviour of the railway vehicles, carried 
out on the basis of the numerical simulations. The vehicle is 
represented by a complex model, with 21 degrees of 
freedom, which allows the study of the vehicle dynamics 
while running on a track with lateral irregularities.  To 
calculate the wheel-rail creep forces, Polach’s non-linear 
model is applied first [19] that is herein extended by 
introducing the influence of the load transfer between the 
wheels of the same wheelset upon the creep coefficients. 
What is obtained is a non-linear model of the vehicle, with 
non-linearity sources in the wheel-rail creep forces, the 
lateral reaction of the rail acting on the wheelset when its 
clearance on the track is consumed and the load transfer 
between the wheels of each wheelset. Afterwards, the wheel-
rail creep forces are calculated according to Kalker’s linear 
theory [23] and the vehicle movement equations become 
linear, thus obtaining a linear model of the vehicle. More 
analyses based on these two models will be carried out, 
while considering various running conditions – running on a 
track with lateral irregularities of a harmonic, random shape 
or some that correspond to defects of an isolated type, in 
correlation with the speed regime. In this context, the 
applicability limits of the linear model will be determined, 
followed by comparison of the accelerations in three 
carbody reference points using the two models.  
 
 
2. The Model of the Vehicle 
 
To study the dynamic behaviour of the railway vehicle 
during running on a track with lateral irregularities, the 
model in Fig. 1 and Fig. 2 [24, 25] will be adopted, whose 
parameters are described in Annex 1. 
 The vehicle carbody is represented with a rigid body 
with the following motions: lateral yc, roll jc and yaw ac. The 
bogie chassis is modelled as a three-degree freedom rigid 
body: lateral ybi, roll jbi and yaw abi, with i = 1 or 2. The 
wheelsets can perform the following independent 
movements: a lateral translation ywj,(j+1) and a motion of 
rotation around the vertical wheelset – yaw, awj,j+1, where j = 
2i – 1, with i = 1 or 2; the bogie i has the wheelsets  j and j + 
1. Also, the wheelset has a rotation around its own axis at 
the angular speed Wwj,(j+1) = V/rw + wwj,j+1, where wwj,j+1 is the 
angular sliding speed of the wheelset compared to V/rw, and 
V is the vehicle velocity. Likewise, the wheelset makes two 
more motions, namely rolling and bouncing, which are not 
independent but they affect the wheelset lateral motion on 
the track. 
 

 
Fig. 1. Vehicle model - front view. 

 
3. The Non-Linear Movement Equations of the Vehicle 

  
The equations of the motions of the vehicle carbody are: 

 

   

mc !!yc + cyc 2( !yc + hc
!φc )− ( !yb1 + !yb2 )+ hb2( !φb1 + !φb2 )⎡⎣ ⎤⎦ +

+2kyc 2 yc + hcφc( )− ( yb1 + yb2 )+ hb2(φb1 +φb2 )⎡⎣ ⎤⎦ = 0 ;
       (1) 

   

Jxc
!!φc + 2czcbc

2 2 !φc − ( !φb1 + !φb2 )⎡⎣ ⎤⎦ +

+cychc 2( !yc + hc
!φc )− ( !yb1 + !yb2 )+ hb2( !φb1 + !φb2 )⎡⎣ ⎤⎦ +

+(kφc + 2kzcbc
2 ) 2φc − (φb1 +φb2 )⎡⎣ ⎤⎦ +

+2kychc 2( yc + hcφc )− ( yb1 + yb2 )+ hb2(φb1 +φb2 )⎡⎣ ⎤⎦ −

−mcghcφc = 0 ;

           (2)  

 

   

Jzc
!!α c + 2cxcbc

2[2 !α c − ( !α b1 + !α b2 )]+

+cycac 2ac
!α c − ( !yb1 − !yb2 )+ hb2( !φb1 − !φb2 )⎡⎣ ⎤⎦ +

+2kxcbc
2[2α c − (α b1 +α b2 )]+

+2kycac 2acα c − ( yb1 − yb2 )+ hb2(φb1 −φb2 )⎡⎣ ⎤⎦ = 0.

                (3)  

 
 The equations of motion for the bogie i, for i = 1, 2 and j 
= 2i – 1, are:   

 

   

mb!!ybi + cyc ( !ybi − hb2
!φbi − !yc − hc

!φc ∓ ac !α c )+

+2cyb[2( !ybi + hb1
!φbi )− ( !ywj + !yw( j+1) )]+

+2kyc ( ybi − hb2φbi − yc − hcφc ∓ acα c )+

+2kyb[2( ybi + hb1φbi )− ( ywj + yw( j+1) )] = 0 ;

                        (4) 

 

   

Jxb
!!φbi + 2czcbc

2( !φbi − !φc )+
+cychb2(hb2

!φbi − !ybi + !yc + hc
!φc ± ac

!α c )+

+2cybhb1[2(hb1
!φbi + !ybi )− ( !ywj + !yw( j+1) )]+

+4czbbb
2 !φbi + (kφc + 2kzcbc

2 )(φbi −φc )+

2kychb2(hb2φbi − ybi + yc + hcφc ± acα c )+

+2kybhb1[2(hb1φbi + ybi )− ( ywj + yw( j+1) )]+

+[4kzbbb
2 − g h12mc / 2+ hb1mb( )]φbi = 0 ,     

with h12 = hb1 + hb2;

                         (5) 
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Jzb
!!α bi + 2cxcbc

2( !α bi − !α c )+

+2cxbbb
2[2 !α bi − ( !αwj + !αw( j+1) )]+

+2cybab[2ab
!α bi − ( !ywj − !yw( j+1) )]+

+2kxcbc
2(α bi −α c )+

+2kxbbb
2[2α bi − (αwj +αw( j+1) )]+

+2kybab[2abα bi − ( ywj − yw( j+1) )] = 0.

                                   (6) 

 
For the wheelsets j, respectively j + 1, for j = 2i – 1 and i 

= 1, 2, the equations of lateral displacement and yaw 
motions and the equation of the rotation motion around the 
wheelset axis are:  

 

   

mw!!ywj , j+1 + 2cyb[ !ywj , j+1 − !ybi − hb1
!φbi ∓ ab !α bi ]+

+2kyb[ywj , j+1 − ybi − hb1φbi ∓ abα bi ]+

= Yj ,( j+1)1 +Yj ,( j+1)2 −Yσ j , j+1

                      (7) 

 

   

Jzw
!!αwj , j+1 + 2cxbbb

2( !αwj , j+1 − !α bi )+ 2kxbbb
2(αwj , j+1 −α bi )+

+J yw

V
rw

!φwj , j+1 = −ew[X j ,( j+1)1 − X j ,( j+1)2 ].
      (8) 

 

   
J yw !ω wj , j+1 = −rw[X j ,( j+1)1 + X j ,( j+1)2 ] ,                                    (9) 

 
where ew, rw – the coordinates of the wheel-rail contact 

points when the wheelset is in a median position on the 
track; the term 

   
J yw(V / rw ) !φwj , j+1 corresponds to the 

gyroscopic moment due to the combined effect of the 
wheelset rotation motion around its own axis with the roll 
motion ϕwj,j+1 [26];  Xj,(j+1)1,2 are the longitudinal forces and 
Yj,(j+1)1,2 – represent the guidance forces acting upon the 
wheelsets  j and  j + 1 respectively, in the wheel/rail contact 
points 1 or 2.  

 

 
Fig. 2. Vehicle model - side view. 

 
The motion equations (1 – 9) can be solved by Runge-

Kutta method. 
The modelling of the situation where the wheelsets 

consume the clearance on the track s is achieved by the 
introduction of the lateral reaction with a non-linear 
characteristic Yσj,(j+1)1,2, which acts upon the front wheel [27]. 
The equation of such force is as such 

 

  

Yσ j , j+1 = H ywj , j+1 −ζ j , j+1 −
σ
2

⎛
⎝⎜

⎞
⎠⎟

sign( ywj , j+1 −ζ j , j+1)

*kyr ywj , j+1 −ζ j , j+1 −
σ
2

⎛
⎝⎜

⎞
⎠⎟

,   (10) 

 
where H(.) is the Heaviside’s unit step function, and function 
ζj,j+1 describes the track irregularities against each wheelset.  

The bouncing and roll equations of the wheelsets, 
motions that are dependent on the lateral displacement of the 
wheelset on the track. When considering that the bounce 
coming from the lateral displacement of the wheelset on the 
track is very low [26], the inertia effect of the wheelset mass 
in the vertical direction can be thus neglected. Hence, the 
balance equation of the vertical forces can be written as 

 

  
Qj ,( j+1)1 +Qj ,( j+1)2 = 2Qw ,     (11) 

 
where Qj,(j+1)1,2  are the vertical loads in the wheel/rail contact 
points and Qw is the static load on the wheel. 

The equation of the wheelset roll motion is  
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Jxw
!!φwj , j+1 − J yw

V
rw

!αwj , j+1 − 2bb
2czb
!φbi − 2bb

2kzbφbi =

= rw[Yj ,( j+1)1 +Yj ,( j+1)2 ]+ ew[Qj ,( j+1)1 −Qj ,( j+1)2 ]+ rwYσ j , j+1

    (12) 

 
where the term 

   
J yw(V / rw ) !αwj , j+1  is given by the gyroscopic 

moment due to the combined effect of the yaw motion with 
the rotation motion of the wheelset around its own axis [26]. 

The wheel/rail contact forces are: the longitudinal forces, 
the guidance forces and the vertical loads. These are 
expressed as a function on the longitudinal components 
Txj,(j+1)1,2 and lateral Tyj,(j+1)1,2 of the creep forces and the 
normal reactions Nj,(j+1)1,2 in the wheel/rail contact points. 
For example, the equations for the wheelsets ’j’ (see Fig. 3) 
can be therefore written  

 

  
X j1,2 = Txj1,2 ;                                                                      (13) 

 

   
Yj1,2 = Tyj1,2 cosγ rj1,2 ∓ N j1,2 sinγ rj1,2 ;    (14) 

 

  
Qj1,2 = ±Tyj1,2 sinγ rj1,2 + N j1,2 cosγ rj1,2 ,                                (15) 

 
where γrj1,2 stand for the wheel/rail contact angles against the 
track reference system and these is calculated with equation 
below 
 

  
γ rj1,2 = γ w ± ( ywj1,2 −ζ j )

1
ρw − ρr

ew + ρwγ w

ew − rwγ w

,                      (16) 

 
where γw is the wheel/rail contact angle for the median 
position of the wheelset on the track and ρw and ρr represent 
the curvature radii of the wheel-rail rolling profiles. 
 

 
Fig. 3. Explanatory for the wheel/rail contact forces. 
 
 

According to Polach’s friction nonlinear model [19], the 
components of the creep forces have the forms  

 

  
Txj1,2 = −

2µN j1,2

π
κ j1,2

1+κ j1,2
2 + arctgκ j1,2

⎛

⎝
⎜

⎞

⎠
⎟
ν xj1,2

ν cj1,2

,                   (17) 

 

  

Tyj1,2 = −µN j1,2

2
π

κ j1,2

1+κ j1,2
2 + arctgκ j1,2

⎛

⎝
⎜

⎞

⎠
⎟
ν yj1,2

ν cj1,2

+

+ 9
16

aj1,2K Mj1,2 1+ 6,3 1− e(−a/b) j1,2( )⎡
⎣⎢

⎤
⎦⎥
ν sj1,2

ν cj1,2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

, (18) 

 
where m is the friction coefficient, νxj1,2 and νyj1,2 is the 
longitudinal and the lateral components of the creepage in 
the wheel/rail contact points, νcj1,2 – the creepage corrected 

by the spin and aj1,2 and bj1,2 stand for the semiaxes of the 
contact ellipse.  

The creepage in the wheel/rail contact points are 
calculated with the equations:  
 

   
ν xj1,2 = ∓

ywj −ζ j

rw

γ e −
ω wjrw

V
∓

ew
"αwj

V
;                              (19) 

 

   
ν yj1,2 =

1
V

(ϕ !ywj − λ !ζ j )−αwj , with 
 
λ =

rwγ w

ew − rwγ w

 and 

 ϕ = 1+ λ ;                                                  (20) 
 

  
ν cj1,2 = ν xj1,2

2 +ν ycj1,2
2 ,                                                       (21) 

 
where γe is the equivalent conicity and νycj1,2 represents the 
lateral component of the creepage corrected by the spin. In 
order to calculate the equivalent conicity and lateral 
component of the creepage corrected by the spin the 
relations below are applied: 
 

 
γ e =

ρrγ w

ρw − ρr

ew + ρrγ w

ew − rwγ w

                                       (22) 

 

  
ν ycj1,2 = ν yj1,2 + aj1,2ν sj1,2 , f 

for  

  
ν yj1,2 + aj1,2ν sj1,2 > ν yj1,2 ,                          (23) 

 

  
ν ycj1,2 = ν yj1,2 ,  

for  

  
ν yj1,2 + aj1,2ν sj1,2 ≤ ν yj1,2 ,     (24) 

 
where νsj1,2 is the spin, defined as    
  

   
ν sj1,2 =

!αwj

V
∓

1
rw

+
ω wj

V
⎛

⎝
⎜

⎞

⎠
⎟ γ wj1,2 ,                      (25) 

 
where γwj1,2 represent the wheel/rail contact angles compared 
to the wheelset reference system 
 

  
γ w1,2 = γ w ± ( ywj1,2 −ζ j )

1
ρw − ρr

ew + ρrγ w

ew − rwγ w

.          (26) 

 
To determine the semiaxes of the wheel/rail contact 

ellipse, the Hertz equations will be used, as a function on the 
normal force and the curves of the rolling profiles [29]. 

The coefficient κj1,2 (see equations (17) and (18)), it can 
be calculated as below 
 

  
κ j1,2 =

1
4

Gπaj1,2bj1,2Cii

µN j1,2

ν cj1,2 ,                                             (27) 

 
where G is the transversal elasticity module and Cii is a 
constant which depends on the coefficients C11 and C22 
defined by Kalker [23]: 
 



Mădălina Dumitriu/Journal of Engineering Science and Technology Review 10 (4) (2017) 154-169 

 158 

  
Cii = C11

ν xj1,2

ν j1,2

⎛

⎝
⎜

⎞

⎠
⎟

2

+ C22

ν yj1,2

ν j1,2

⎛

⎝
⎜

⎞

⎠
⎟

2

, with 

  
ν j1,2 = ν xj1,2

2 +ν yj1,2
2 .                                         (28) 

 
The coefficient KMj1,2 (see the equation (18)) is  
 

  
K Mj1,2 = κ sj1,2 ⋅

δ j1,2
3

3
−
δ j1,2

2

2
+ 1

6

⎛

⎝
⎜

⎞

⎠
⎟ −

1
3

(1−δ j1,2
2 )3 ,            (29) 

 
where  
 

  
δ j1,2 =

κ sj1,2
2 −1

κ sj1,2
2 +1

,                                                  (30) 

 
for  

  

κ sj1,2 =
8
3

Gbj1,2 aj1,2bj1,2

µN j1,2

C23ν ycj1,2

1+ 2π 1− e−(a/b) j1,2⎡
⎣

⎤
⎦

,                  (31) 

 
where C23 is the coefficient calculated by Kalker for the spin 
[23]. 

To determine the normal reactions Nj1,2 in the wheel/rail 
contact points of the wheelsets ’j’ the equations (11) and 
(12) are written as below  

 

  
q j1N j1 + qj2N j2 = 2Qw ;                                                    (32) 

  
(rw p j1 − ewq j1)N j1 + (rw p j2 + ewq j2 )N j2 = −cj ,             (33) 

 
in which   
 

   
c j = Jxw

!!φwj − J yw(V / rw ) !αwj − 2bb
2czb
!φbi − 2bb

2kzbφbi − rwYσ j  (34) 

 

   
q j1,2 = 1∓ K j1,2

ν yj1,2

ν cj1,2

+ Ksj1,2

ν sj1,2

ν cj1,2

⎛

⎝
⎜

⎞

⎠
⎟ γ rj1,2 ; 

  
p j1,2 = K j1,2

ν yj1,2

ν cj1,2

+ Ksj1,2

ν sj1,2

ν cj1,2

± γ rj1,2 ,                   (35) 

 
where 
 

  
K j1,2 =

2µ
π

κ j1,2

1+κ j1,2
2 + arctgκ j1,2

⎛

⎝
⎜

⎞

⎠
⎟ ;  

 

  
Ksj1,2 =

9µ
16

aj1,2K Mj1,2 1+ 6,3 1− e−(a/b) j1,2( )⎡
⎣⎢

⎤
⎦⎥ .   (36) 

 
The solution of the set of non-linear equations (32 – 33) 

can be derived by simple iterations via the below equations 
 

  
N j1 =

2(rw p j2 + ewq j2 )Qw + qj2cj

rw(qj1 pj2 − qj2 pj1)+ 2ewq j1qj2

; 

  
N j2 =

−qj1cj − 2(rw p j1 − ewq j1)Qw

rw(qj1 pj2 − qj2 pj1)+ 2ewq j1qj2

.                       (37) 

 

The equations (37) are used iteratively for each 
integration step in the calculation of the wheel/rail contact 
normal forces.  

 
 

4. The Linear Movement Equations of the Vehicle 
 

To express the linear movement equations of the vehicle, a 
starting point is the non-linear equations in the previous 
section, which will be linearized in line with the below 
procedure applied around the vehicle equilibrium position in 
an ideal track. 

The movement equations of the carbody and bogies can 
be noticed to be linear (Eq. 1-6), while the wheelset 
movement equations (7 - 9) – where the creep forces and the 
rail lateral reaction are present – are non-linear. Similarly, 
the algebraic equations (37) will insert non-linear terms, 
based on which the normal forces on the rolling surfaces are 
calculated.  

The linear movement equations describe the regime of 
the small oscillations around the balance position of the 
vehicle on the track. To linearize the movement equations, 
the lateral rail reaction that only acts upon the clearance 
consumption on the track will consequently be taken out 
(Ysj,(j+1) = 0) from the equation of yaw movement in the 
wheelsets (Eq. (7)). 

According to Kalker’s theory [23], the non-linear 
expressions of the creep forces for the wheelsets ’j’ for small 
creepage (0.001 ... 0.0015), are given in the equations 

 

  
Txj1,2 = −N j1,2χ xvxj1,2 ;                                             (38) 

 

  
Tyj1,2 = −N j1,2 (χ yvyj1,2 + χ svsj1,2 ) ,                        (39) 

 
where the longitudinal and lateral creepage are found in the 
equations (19) and (20), while the (adimensional) spin 
creepage comes from the relation   
 

   
ν sj1,2 =

rw !αwj

V
∓ γ wj1,2 .                             (40) 

 
The creepage coefficients χx, χy şi χs are defined as 

follows: 
 

  
χ x =

Gaj1,2bj1,2

N j1,2

C11 ;
  
χ y =

Gaj1,2bj1,2

N j1,2

C22

  
 χs =

G(aj1,2bj1,2 )3/2

rwN j1,2

C23 ,    (41) 

 
in which, for linearization reasons, Nj1,2 = Qw, aj1,2 = a and 
bj1,2 = b are considered, where a and b are the semiaxes of 
the contact ellipse corresponding to the load Qw.    

The parameters qj1,2 and pj1,2 (Eq. (35)) will be therefore 
written as: 

 

   
q j1,2 = 1∓ (χ yν yj1,2 + χ sν sj1,2 )γ rj1,2 ; 

  
p j1,2 = χ yν yj1,2 + χ sν sj1,2 ± γ rj1,2 .                                          (42) 

 
After processing, relation (42) becomes:  
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q j1,2 = 1∓

χ y

ϕ "ywj − λ "ζ j

V
−αwj

⎛
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⎞

⎠
⎟ +

+χ s

rw "αwj

V
∓ γ w − εw

ywj −ζ j

ew

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
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⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

*

* γ w ± ε r

ywj −ζ j

ew

⎛

⎝
⎜

⎞

⎠
⎟

;         (43) 

 
 

   

p j1,2 = χ y

ϕ !ywj − λ !ζ j

V
−αwj

⎛

⎝
⎜

⎞

⎠
⎟ +

+χ s

rw !αwj

V
∓ γ w − εw

ywj −ζ j

ew

⎛

⎝
⎜

⎞

⎠
⎟

±γ w + ε r

ywj −ζ j

ew

,                    (44) 

 

for 
 
ε r =

ew

ρw − ρr

ew + ρwγ w

ew − rwγ w

; 
 
εw =

ew

ρw − ρr

ew + ρrγ w

ew − rwγ w

.     (45) 

 
To obtain certain linear shapes for the reactions Nj1,2, the 

second degree terms will be left out in (43) – (44) and the 
below approximations will be considered   

 

  
q j1,2 ≅ 1 ;

  
p j1,2 ≅ ±γ w .                                                         (46) 

 
The expressions for the reactions will be derived from 

(37) and (46)  
 

  
N j1,2 = Qw ±

cj

2(ew − rwγ w )
                                                 (47) 

 
where cj comes from (34) for Ysj = 0 
 

   
c j = Jxw

!!φwj − J yw

V
rw

!αwj − 2bb
2czb
!φbi − 2bb

2kzbφbi .                   (48) 

 
The linear expressions of the contact forces can be now 

written: 
 

   
X j1,2 = −χ xQw ∓

ywj −ζ j

rw

γ e −
rwω wj

V
∓

ew
"αwj

V
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⎠
⎟ ;   (49) 

 

   

Yj1,2 = Qw

χ y
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V
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 (50) 

 
 
 
 
 
 

 
 

   

Qj1,2 = Qw 1∓ γ w
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      (51) 

 
The linearized movement equations of the wheelsets are: 
 
- the yaw movement equation   
 

   

mw!!ywj ,( j+1) + 2cyb !ywj ,( j+1) − !ybi − hb1
!φbi ∓ ab

!α bi
⎡⎣ ⎤⎦ +

+2kyb ywj ,( j+1) − ybi − hb1φbi ∓ abα bi
⎡⎣ ⎤⎦ +

+2ϕ
χ yQw

V
!ywj ,( j+1) + 2

χ srwQw

V
!αwj ,( j+1) −

−J yw

γ wV
rw

1− χ s

ew − rwγ w

!αwj ,( j+1) +

+2Qwε r

1− χ sεw

ew

yoj ,( j+1) − 2χ yQwαwj ,( j+1) −

−2γ w(1− χ s )
bb

2czb

ew − rwγ w

!φbi −

−2γ w(1− χ s )
bb

2kzb

ew − rwγ w

φbi = 2λ
χ yQw

V
!ζ j ,( j+1) +

+2Qwε r

1− χ sεw

ew

ζ j ,( j+1)

      (52) 

 
only to mention that the inertial term due to the wheelset roll 

   

γ w(1−κ s )Jxw

ew − rwγ w

!!φwj  has been left out, since it is much smaller 

than the influence of the wheelset mass. 
  

- the hunting movement equation 
 

   

Jzw
!!αwj ,( j+1) + 2cxbbb

2( !αwj ,( j+1) − !α bi )+ 2kxbbb
2(αwj ,( j+1) −α bi )+

+J yw

V
rw

2 λ( !ywj ,( j+1) − !ζ j ,( j+1) )+ 2χ xQw

ewγ e

rw

ywj ,( j+1) +
ew

2

V
!αwj ,( j+1)

⎛

⎝⎜
⎞

⎠⎟
=

= 2χ xQw

ewγ e

rw

ζ j ,( j+1).

 (53) 

 
- the wheelset rotation movement around its own axis 
 

   
J yw
!ω wj + 2χ x

rw
2Qw

V
ω wj = 0                                                 (54) 

 
Following the linearization, the rotation movement 

around its own axis is noticed to become independent.  
 

 
5. Numerical Analysis 
 
In order to establish the applicability domain of the linear 
models within the lateral dynamics of the railway vehicles, 
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this section will focus on a series of results obtained from 
numerical simulations developed on the models presented in 
the previous sections in this paper.  
 The compared parameters are the lateral accelerations 
calculated in three carbody reference points (at the carbody 
centre and above the bogies) during the running of the 
vehicle on a track with lateral irregularities: a) in a harmonic 
shape; b) isolated defect-type; c) random shape. 
 The parameters of the numeric model are featured in 
Table 1 and are representatives for a passenger vehicle. To 
calculate the geometrical parameters of the wheel/rail 
contact, the S78 profile wheel and the UIC 60 rail with the 
standard cant at C.F.R. of 1/20 are considered (see Table 2) 
[30]. 
 
Table 1. The parameters of the numerical model. 

mc = 34000 kg; 2cxc = 50 kNs/m 
mb = 3200 kg cyc = 15.205 kNs/m 
mw = 1650 kg 2czc = 34.44 kNs/m 

Jxc = 57460 kgm2 2kxc = 340 kN/m 
Jzc = 2456500 kgm2 2kyc = 340 kN/m 

Jxb = 3200 kgm2 2kzc = 1.2 MN/m 
Jzb = 5000 kgm2 kϕc = 10 kNm 

Jxw = Jzw = 928.125 kgm2 4cxb = 100 kNs/m 
Jyw =  349.14 kgm2 4cyb = 35.77 kNs/m 

2ac = 19 m 4czb = 52.21 kNs/m 
2ab = 2.56 m 4kxb = 140 MN/m 

hc = 1.3 m 4kyb = 10 MN/m 
hb1 = 0.25 m; hb2 = 0.2 m 4kzb = 4.4 MN/m 

2bb = 2bc = 2 m kyr = 100 MN/m 
σ = 12 mm m = 0.36 

 
 

Table 2. The geometrical parameters of the wheel/rail 
contact. 
rw = 0.500 m; rr = 0.300 m gw = 0.0495   

ew = 0.754 m; rw = 0.4598 m γe = 0.1237 
 
 The critical speed of the vehicle of 261.56 km/h derives 
from the values in Tables 1 and 2 [20]. 

The validity limits of the linear model should be firstly 
established, which involves the determination of the running 
conditions corresponding to which the creepage in the 
wheel-rail contact points are sufficiently low (< 0.0015) so 
that the linear theory underlining the model be applicable. 

To calculate the creepage in the wheel-rail contact 
points, the relation below applies 

 

  
ν j ,( j+1)1,2 = ν xj ,( j+1)1,2

2 +ν yj ,( j+1)1,2
2 , for j = 2i – 1,  

with i = 1, 2.                                           (55) 
 
a) Track lateral irregularities in a harmonic shape 

 
The lateral irregularities of the track are considered 

harmonic with the wavelength Λ and amplitude ζ0, in the 
form of  

 

  
ζ (x) = ζ0 cos

2π
Λ

x ,                                                            (56) 

 
where the position of the coordinate  x =Vt  corresponds to 
the middle of the vehicle. 

The track irregularities are out of phase in conformity 
with the vehicle wheelbase against each wheelset,  

 

  
ζ1,2 (x) = ζ0 cos

2π
Λ

(x + ac ± ab ) ;  

  
ζ3,4 (x) = ζ0 cos

2π
Λ

(x − ac ± ab ) .                                        (57) 

 
The functions ζj,(j+1), with j = 2i – 1 for i = 1, 2, can be 

expressed as time harmonic functions  
 

  
ζ1,2 (x) = ζ0 cosω t +

ac ± ab

V
⎛
⎝⎜

⎞
⎠⎟

;  

   
ζ3,4 (x) = ζ0 cosω t −

ac ∓ ab

 V   
⎛
⎝⎜

⎞
⎠⎟

,    (58) 

 
in which w = 2πV/Λ represents the angular frequency 
induced by the track excitation (w = 2πf, where f is the 
excitation frequency). 

The wavelength of the track lateral irregularities is 
adopted so that the excitation frequency coincides with the 
frequencies that dominate the power spectral density of the 
carbody acceleration, which become important in terms of 
the dynamic behaviour of the vehicle. It is about the natural 
frequencies of the coupled movement of yaw-roll (0.46 Hz 
and 1.21 Hz) and the carbody hunting frequency (0.78 Hz) 
[21]. As for the amplitude of the lateral irregularities, values 
between 0.1 ... 2 mm will be used.  

The Fig. 4 (for V = 100 km/h) and Fig. 5 (for V = 200 
km/h) feature the values of the creepage in the wheel-rail 
contact points during running on a track with lateral 
irregularities of a harmonic shape, with the above-mentioned 
characteristics. The limits of the applicability domain of the 
vehicle linear model can be noticed to change along with 
velocity and excitation frequency.  At the speed of 100 km/h 
(Fig. 4), the linear model can be applied for the excitation 
frequencies already considered unless the amplitude of the 
track irregularities exceeding 1 mm. For a velocity of 200 
km/h (Fig. 5), at excitation frequencies corresponding to the 
low frequency of the coupled movement of yaw-roll, the 
model can be applied for amplitudes of the track 
irregularities of up to 1 mm. Should the excitation frequency 
is 0.78 Hz, equal to the carbody hunting frequency, or 1.21 
Hz - equal to the high frequency of the coupled movement of 
yaw-roll, the linear model is then valid for amplitudes of the 
track irregularities lower than 0.5 mm. 
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Fig. 4. Wheelset creepage for V = 100 km/h:  (a) 0.46 Hz; (b) 0.78 
Hz; (c) 1.21 Hz.—, 1 wheelset; —, 2 wheelset; —, 3 wheelset; —,  4 
wheelset. 

Fig. 5. Wheelset creepage for V = 200 km/h:  (a) 0.46 Hz; (b) 0.78 Hz; 
(c) 1.21 Hz.—, 1 wheelset; —, 2 wheelset; —, 3 wheelset; —,  4 
wheelset. 

 
 



Mădălina Dumitriu/Journal of Engineering Science and Technology Review 10 (4) (2017) 154-169 

 162 

Once determined the applicability limits of the linear 
model, it is interesting to see to what extent the derived 
results are comparable to the results reached by using the 
non-linear model of the vehicle. The Tables 3 - 4 show the 
maximum values of the accelerations in three reference 
points (at the carbody centre and above the two bogies), 

coming from the use of the two models. It is obvious that the 
previous cases have been taken into account and for each the 
study has been narrowed down to the domain for which the 
linear model is applicable. A good correspondence between 
the results from the two models is visible. 

 
 
Table 3. The maximum values for the carbody acceleration at 100 km/h velocity  
Frequency 
excitation 

(Hz) 

Wavelength 
Λ  (m) 

Amplitude  
ζ0 (mm) 

Linear model Non-linear model 
Acceleration (m/s2)  Acceleration (m/s2) 

at the 
carbody 
centre 

above the 
front 
bogie 

above the 
rear bogie 

at the 
carbody 
centre 

above the 
front 
bogie 

above the 
rear bogie 

0.46 60.98 
1 0.0205 0.0100 0.0317 0.0207 0.0101 0.0319 

0.5 0.0103 0.0050 0.0159 0.0104 0.0050 0.0160 
0.1 0.0021 0.0009 0.0032 0.0021 0.0010 0.0032 

0.78 35.61 
1 0.0222 0.1347 0.1377 0.0221 0.1367 0.1395 

0.5 0.0011 0.0674 0.0688 0.0011 0.0683 0.0697 
0.1 0.0002 0.0135 0.0138 0.0002 0.0137 0.0139 

1.21 22.95 0.5 0.0819 0.0668 0.0971 0.0820 0.0669 0.0972 
0.1 0.0164 0.0134 0.0194 0.0164 0.0134 0.0194 

 
 

Table 4. The maximum values of the carbody lateral acceleration at 200 km/h velocity 
Frequency 
excitation 

(Hz) 

Wavelength 
Λ  (m) 

Amplitude  
ζ0 (mm) 

Linear model Non-linear model 
Acceleration (m/s2)  Acceleration (m/s2) 

at the 
carbody 
centre 

above the 
front 
bogie 

above the 
rear bogie 

at the 
carbody 
centre 

above the 
front 
bogie 

above the 
rear bogie 

0.46 120.77 
1 0.0310 0.0251 0.0370 0.0310 0.0250 0.0370 

0.5 0.0155 0.0125 0.0185 0.0155 0.0125 0.0185 
0.1 0.0031 0.0025 0.0037 0.0031 0.0025 0.0037 

0.78 71.22 0.5 0.0068 0.0502 0.0376 0.0068 0.0505 0.0378 
0.1 0.0014 0.0100 0.0075 0.0014 0.0101 0.0076 

1.21 45.91 0.5 0.0196 0.0433 0.0168 0.0199 0.0438 0.0168 
0.1 0.0039 0.0087 0.0014 0.0040 0.0088 0.0014 

 
The Fig. 6 - 8 include the carbody lateral accelerations 

while running at 200 km/h speed, on a track with the 
amplitude of the harmonic irregularities of ζ0 = 0.5 mm and 
various wavelengths: Λ = 120.77 m (corresponding to the 
excitation frequency of 0.46 Hz); Λ = 71.22 m 
(corresponding to the excitation frequency of 0.78 Hz); Λ = 
45.91 m (corresponding to the excitation frequency of 1.21 
Hz). What is obvious is the harmonic shape of the 
accelerations, which proves the permanent regime of 
vibration. At frequency of 0.46 Hz, the accelerations in those 
three carbody reference points are in phase. For the 
frequencies of 0.78 Hz and 1.21 Hz, the acceleration at the 
carbody centre is in phase only with the acceleration above 
the front bogie.  

As for the level of vibrations in the carbody reference 
points, it changes as a function of the excitation frequency 
and the wavelength of the track lateral irregularities 
respectively, in the same direction for both models. To 

further examine this aspect, the concept of carbody critical 
point is introduced, as being that reference point where the 
level of vibrations is the highest (calculated on the basis of 
lateral acceleration). 

Should the excitation frequency coincides with the 
natural law frequency of the coupled movement of yaw-roll 
(0.46 Hz), then the maximum value of acceleration is found 
above the rear bogie, which thus becomes the carbody 
critical point; the acceleration will be at is lowest value 
above the front bogie (Fig. 6). In case the excitation 
frequency is equal with the carbody hunting frequency (0.78 
Hz), the highest value of the lateral acceleration occurs 
above the front bogie and the lowest at the carbody centre 
(Fig. 7). For the natural high frequency of the coupled 
movement of yaw-roll (1.21 Hz), the critical point remains 
above the front bogie, while the lowest acceleration is above 
the rear bogie (Fig. 8).  
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Fig. 6. Carbody lateral acceleration during running on a track with lateral irregularities of a harmonic shape (Λ = 120.77 m, ζ0 = 0.5 mm): (a) linear 
model; (b) non-linear model;──, at the carbody centre; ──, above the front bogie; ──, above the rear bogie. 
 
 

 
Fig. 7. Carbody lateral acceleration during running on a track with lateral irregularities of a harmonic shape (Λ = 71.22 m, ζ0 = 0.5 mm): (a) linear 
model; (b) non-linear model; ──, at the carbody centre; ──, above the front bogie; ──, above the rear bogie. 

 
 

 
Fig. 8. Carbody lateral acceleration during running on a track with lateral irregularities of a harmonic shape (Λ = 45.91 m, ζ0 = 0.5 mm): (a) linear 
model; (b) non-linear model;──, at the carbody centre; ──, above the front bogie; ──, above the rear bogie. 
 

b) Lateral irregularities of the track, corresponding to 
isolated defects  

 
Against each wheelset, the isolated defect can be 

analytically described in a function such as below: 
 

  
ζ j ,( j+1) (x j ,( j+1) ) = ζ0 sin2(π x j ,( j+1) / Λ) , for 0 ≤ xj,(j+1) ≤ 

L ;                                                             
(59) 

  
ζ j ,( j+1) (x j ,( j+1) ) = 0 , for xj,(j+1) < 0 or xj,(j+1) > L,  

 
where, depending on the wheelset position within the 
vehicle, xj,(j+1) is: 
 

- for i = 1,   x1 = x ;   x2 = x − 2ab ;  

- for i = 2,   x3 = x − 2ac ;   x4 = x − 2ab − 2ac ,                              
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where abscissa x is calculated in dependence on the moment 
t, x = Vt. 

The wavelength L = 10 m is considered for this case; 
according to the UIC 518 Leaflet [31], and as for the defect 
amplitude, unless the velocity exceeds 200 km/h, ζ0  = 4 mm 
can be adopted for a QN1 quality track; for a QN2 track, the 
value of ζ0 is 6 mm. 

When following a similar methodology with the running 
on a track with lateral irregularities in a harmonic shape for 
establishing the applicability domain of the linear model, the 
creepage will be calculated in the wheel-rail contact points 
and conditions will be set forth for which these results do 
not exceed 0.0015. As seen in Fig. 9 and Fig. 10, these 
conditions are complied with for all the situations being 
examined. 

 
 

  
Fig. 9. Wheelset creepage for V = 100 km/h:  
— , 1 wheelset; — 2, wheelset;  
—, 3 wheelset; —,  4 wheelset. 
 

Fig. 10. Wheelset creepage for V = 200 km/h: 
— , 1 wheelset and 3 wheelset;  
—, 2 wheelset and 4 wheelset. 

 
The Table 5 features the maximum values of the lateral 

accelerations in the carbody reference points at velocities of 
100 km/h and 200 km/h, derived from using the two models, 
whereas the Fig. 11 and 12 show a time history of the 
carbody lateral accelerations upon passing over an isolated 
defect with a 6 mm-amplitude. While using the linear model 
of the vehicle, higher values of acceleration are noticed, as 
well as the fact that the differences between the results from 
the two models increase along with the velocity and the 

amplitude of the isolated defect. For instance, if referring to 
the maximum acceleration calculated at the carbody centre, 
it can be proved that there occur the following differences 
between the results derived from the linear model and non-
linear model of the vehicle: for ζ0 = 4 mm – 5.79%, at 100 
km/h; 10.02%, at 200 km/h; for ζ0 = 6 mm – 9.07%, at 100 
km/h; 15.90%, at 200 km/h. 

 
 
Table 5. The maximum values of the carbody lateral acceleration during running on a track with lateral irregularities 
corresponding to isolated defects   

Amplitude of 
the isolated 

defect  
ζ0 (mm) 

Velocity 
(km/h) 

Linear model Non-linear model 
Acceleration (m/s2)  Acceleration (m/s2) 

at the 
carbody 
centre 

above the 
front bogie 

above the 
rear bogie 

at the 
carbody 
centre 

above the 
front bogie 

above the 
rear bogie 

4 100 0.1754 0.1877 0.2787 0.1658 0.1751 0.2652 
200 0.1943 0.2196 0.2192 0.1766 0.2651 0.2611 

6 100 0.2631 0.2815 0.4180 0.2412 0.2519 0.3826 
200 0.2915 0.4372 0.4353 0.2515 0.3806 0.3780 

 
As for the position of the carbody critical point in terms 

of the level of vibrations, it can be immediately identified 
above the rear bogie at velocity of 100 km/h, both during 
running on a QN1 quality track QN1 (ζ0 = 4 mm) or QN2 

(ζ0 = 6 mm), irrespective of the applied model. At the 
velocity of 200 km/h, the acceleration above the two bogies 
will have close value, a reason for which the vehicle carbody 
has two critical points.     
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Fig. 11. Carbody lateral acceleration during passing over an isolated defect at velocity of 100 km/h, with a 6 mm-amplitude: (a) linear model; (b) non-
linear model──, at the carbody centre; ──, above the front bogie; ──, above the rear bogie. 
 

 
 
Fig. 12. Carbody lateral acceleration during passing over an isolated defect at velocity of 200 km/h, with a 6 mm-amplitude: (a) linear model; (b) non-
linear model ──, at the carbody centre; ──, above the front bogie; ──, above the rear bogie. 

 
c) Track lateral irregularities in a random shape 
 
The track lateral irregularities are described by a pseudo-

stochastic function ζ(x), written as [32] 
 

  
ζ (x) = Kζ f (x) Uk cos(Ωk x +φk )

k=0

N

∑ ,                                 (60) 

 

with 

  

Kζ =
ζ adm

max f (x) Uk cos(Ωk x +φk )
k=0

N

∑
,                       (61) 

 
where: Kζ is a scaling coefficient of the amplitudes in the 
track lateral irregularities, ζadm is the maximum value of the 
track lateral irregularities as per UIC 518 Leaflet [31]; f(x) is 
an adjustment function applied on the distance L0, in the 
form of  
 

  

f (x) = 6 x
L0

⎛

⎝⎜
⎞

⎠⎟

5

−15 x
L0

⎛
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⎠⎟

4

+10 x
L 0

⎛
⎝⎜

⎞
⎠⎟

3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

*H (L0 − x) + H (x − L0 )

,   (62) 

 
where H(.) is the Heaviside’s unit step function; Uk is the 
amplitude of the spectral component corresponding to the 
wave number Wk, and jk is the lag of the spectral component 
‚k’ for which a uniform random distribution is selected. The 
amplitude of each spectral component is established on the 
basis of the power spectral density of the track irregularities 
described in accordance with ORE B176 [33] and the 
specifications included in the UIC 518 Leaflet [31] 
regarding the track geometrical quality described by the 
quality levels QN1 and QN2.  

Against each wheelset, the track lateral irregularities are 
described by the function ζj,,(j+1)(xj,(j+1)),.dependent on the 
distance along the track, as such 

 

  
ζ j , j+1(x j ,( j+1) ) = 0 , for xj,(j+1) ≤ 0;  

  
ζ j , j+1(x j , j+1) = ζ (x j ,( j+1) ) , for 

xj,(j+1) > 0,                                   (63) 
 

with,   x1 = x ;   x2 = x − 2ab , for i = 1;    x3 = x − 2ac ; 

  x4 = x − 2ab − 2ac , for i = 2.      
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Fig. 13. Wheelset creepage for QN1: — , 1 wheelset; — 2, wheelset; —, 
3 wheelset; —,  4 wheelset. 

Fig. 14. Wheelset creepage for QN2:— , 1 wheelset; — 2, wheelset; —, 
3 wheelset; —,  4 wheelset. 

 
To determine the applicability limits of the linear model, 

the velocities of 100 km/h and 200 km/h will be taken into 
account, along with both quality levels for the track, QN1 
and QN2 [31], for which the creepage will be calculated in 
the wheel-rail contact points for all four wheelsets of the 
vehicle (see Fig. 13 and Fig. 14). The prerequisite regarding 
the value of the creepage (ν < 0.0015), for which the vehicle 
linear model is valid, is only met during running on a QN1 

quality track. For this case, the carbody lateral accelerations 
calculated in the three reference points via the linear model 
and the non-linear model will be compared (see Fig. 15 and 
Fig. 16). The comparison units are represented by the 
maximum values (the encircled peaks) and the root mean 
square deviation of the lateral acceleration, as seen in Table 
6. It has to underline that no flange contact has been 
signalised in numerical simulation results.   

 
Fig. 15. Carbody lateral acceleration during running at 100 km/h velocity on a QN1 quality track: linear model – (a) at the carbody centre; (b) above 
the front bogie; (c) above the rear bogie; non-linear model – (a’) at the carbody centre; (b’) above the front bogie; (c’) above the rear bogie.  
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Fig. 16. Carbody lateral acceleration during running at 200 km/h velocity on a QN1 quality track: linear model – (a) at the carbody centre; (b) above 
the front bogie; (c) above the rear bogie; non-linear model – (a’) at the carbody centre; (b’) above the front bogie; (c’) above the rear bogie.  
 

When examining the results for the velocity of 100 km/h, 
the differences between the maximum accelerations 
calculated on the basis of the two models can be shown to 
fall within the limits 0.91% ... 2.72%. The root mean square 
deviation of the acceleration for the linear model is at least 
2.07% higher than the same deviation for the acceleration in 
the non-linear model of the vehicle. The differences increase 
along with the velocity; they will be found in the interval 

2.56% ... 4.20% for the maximum acceleration at 200 km/h 
velocity and 2.56% ... 5.13% for the root mean square 
deviation of the acceleration.  

Finally, the carbody critical point will be above the rear 
bogie for both models, at the 100 km/h velocity. Should 
velocity goes up to 200 km/h, the critical point will shift to 
the front bogie.  
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Table 6. The values of the carbody lateral accelerations during running on a QN1 quality track  
Velocity 
(km/h) 

Acceleration 
(m/s2) 

Linear model Non-linear model 
at the 

carbody 
centre 

above the 
front bogie 

above the 
rear bogie 

at the 
carbody 
centre 

above the 
front bogie 

above the 
rear bogie 

100 

Maximum 
value 0.2266 0.2276 0.2868 0.2206 0.2297 0.2811 

Root mean 
square 

deviation 
0.0703 0.0737 0.0884 0.0690 0.0722 0.0879 

200 

Maximum 
value 0.2204 0.3164 0.2643 0.2115 0.3174 0.2555 

Root mean 
square 

deviation 
0.0655 0.0958 0.0873 0.0623 0.0934 0.0832 

 
 

4. Conclusions 
 
The paper features a set of analyses based on which there 
have been determined the limits where the linear models can 
be used for the study of the lateral dynamic behaviour during 
running on a track with lateral irregularities, depending on 
the velocity regime.  It has been demonstrated that these 
limits do not cover a domain where all the specific situations 
in the exploitation of the railway vehicles be included; the 
reference here is made to the least unfavourable conditions – 
running at high velocity on a track with lateral irregularities, 
whose amplitude can have the maximum value admitted.  

Within the limits of the applicability domain of the linear 
model, the analyses made via the comparison of the 
accelerations at the carbody level derived from the linear 
model with the non-linear ones have proved close results by 
using the two models.  Significant differences, which can 
reach up to 16%, will be visible in conditions of running at a 
high velocity on a track with lateral isolated defects. It is 
worthwhile noticing that the differences between the results 
of the two models occur at the applicability limit of the 

linear model (for close creepage or equal with the limit value 
0.0015). 

When introducing the concept of critical point as that 
carbody reference point where the level of vibrations is the 
highest, it was demonstrated that its position was not 
affected by the model in use but by the running conditions, 
namely the excitation frequency or the velocity. 
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Annex 1. The parameters of the vehicle model. 

mc Carbody mass   2czc  Vertical damping of the secondary suspension*  

mb Mass of suspended bogie  cyc  Lateral damping of the secondary suspension* 

mw Wheelset mass  2cxc  
Longitudinal damping of the secondary 
suspension* 

Jxc Jzc The inertia moments of the carbody 2kzc  Vertical rigidity of the secondary suspension* 
Jxb 
Jzb 

The inertia moments of the bogie chassis 2kyc  Lateral rigidity of the secondary suspension*  

Jxw 
Jzw  
Jzw 

The inertia moments of the wheelset  2kxc  Longitudinal rigidity of the secondary suspension* 

2ac The vehicle wheelbase kjc Torsional stiffness of the secondary suspension* 

2ab The bogie wheelbase 2czb  Vertical damping of the primary suspension**  

2bc The lateral base of the secondary suspension 2cyb  Lateral damping of the primary suspension**    

2bb The lateral base of the primary suspension  2cxb Longitudinal damping of the primary suspension**    

hc 
Distance of the carbody mass centre compared to 
the plan of secondary suspension  2kzb  Vertical rigidity of the primary suspension**    

hb1  
Distance of the bogie mass centre compared to 
the wheelset axis 2kyb  Lateral rigidity of the primary suspension**    

hb2  
Distance of the bogie mass centre compared to 
the plan of secondary suspension 2kxb  Longitudinal rigidity of the primary suspension**    

rw The radius of the rolling circle when  wheelset 
occupies the median position on the track kyr The rail lateral stiffness 

 
* per bogie; ** per axle. 


