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Abstract 
 

Precise velocity control of permanent magnet synchronous motors (PMSMs) is challenging due to the uncertainties 
induced by the mathematical model, unmodeled dynamics, and various disturbances; consequently, the traditional model 
reference adaptive control (MRAC) for PMSMs becomes questionable. In order to improve the traditional MRAC and 
lessen the influence of various sources of uncertainty, this study proposes an enhanced MRAC approach based on data-
driven technique. First, the approach established an equivalent differential expression linear model for the discrete-time 
nonlinear description of PMSM and designed a data-driven controller using a model-free adaptive technique. This design 
depended on the unique bounded parameter referred as pseudo-partial-derivative (PPD) that was a slowly time-varying 
parameter relating to the system action point or system dynamics. Second, the approach identified the parameter PPD 
using Popov criterion to ensure the asymptotic stability of the controlled system. Finally, the approach was simulated and 
applied on a 50 kW PMSM drive of Toyota Prius II hybrid electric vehicles to demonstrate the effects of different control 
parameters. Results show that the proposed approach does not suffer from the drawback of the modeling process and 
unmodeled dynamics and provides improved velocity-tracking precision against parameter variations and external 
disturbances. When the weight factor increases from 0.1 to 1 or the pseudo-orders from 1 to 5, the velocity presents high 
robustness. Moreover, the approach yields satisfactory disturbance rejection and fault tolerance compared with the 
traditional MRAC even if some input and output (I/O) data are missing. This study solves the problem of dependence on 
plant models for the traditional MRAC and achieves better suppression of uncertainties, demonstrating the effective 
applications of this approach for actual nonlinear motor systems with uncertainties. 
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1. Introduction 
 
Permanent magnet synchronous motors (PMSMs) are widely 
used in high-performance servo applications owing to their 
high efficiency, superior power density, and large torque-to-
inertia ratio. Nowadays, PMSM driving has become the 
trend in electric drive control systems with the support of 
rich rare earth materials and advanced control strategies [1]. 
However, PMSMs are nonlinear multivariable dynamic 
systems, and the uncertainties induced by parameter 
variations, external disturbances, and unmodeled dynamics 
have become a common problem, which reduces the stability 
and robustness of the controlled system. To suppress these 
uncertainties and achieve the desired servo control 
performance, advanced strategies must be developed. 

Traditional proportional-integral-derivative (PID) 
control can achieve better performance when parameters 
effectively match. However, PID shows poor performance 
when parameters vary or when affected by external 
disturbances; moreover, it does not consider dynamic 
response and disturbance rejection ability coordinately. 

Adaptive control is a popular approach to solve these 

problems, and one of the most typical representatives is 
Model Reference Adaptive Control (MRAC) [2]. However, 
this approach typically assumes that the mathematical model 
of the system is known and the parameters are unknown or 
slowly time-varying [3]. For practical PMSM drives, the 
models are often complex and the parameters cannot be 
easily identified; thus, this adaptive control is questionable.  

To solve these problems, the present study focuses on 
the investigation of enhanced MRAC and attempts to 
achieve a general approach to control dynamical PMSM 
systems with uncertainties. 
 
 
2.  State of the art  
 
Despite the advantages of PMSM drives, high precision 
velocity control is challenging because the mathematical 
model of PMSM only approximates the actual plant, and the 
motion dynamics of PMSM are complicated, intrinsically 
nonlinear, and subject to various sources of disturbance and 
uncertainty. Classical or modern control theories cannot 
satisfy the high performance requirements in practical 
applications due to the preconditions of precisely or partially 
known mathematical models. For such problems, adaptive 
control is an effective solution [4]. Adaptive control allows 
the systems to operate automatically at optimal or 
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approximately optimal conditions even if the model is 
incomplete or partially known. Among numerous adaptive 
control approaches, the MRAC should be first considered 
because of its improved theoretical research results and 
practical applications. For PMSM systems with uncertainties, 
the MRAC presents strong robustness and favorable 
disturbance rejection properties against structure or 
parameter variations. In the past decades, the research and 
design of MRAC systems have significantly progressed [4], 
[5]. Relatively complete and comprehensive guidelines are 
now available for designing and implementing adaptive 
controllers. 

However, traditional MRAC has been having drawbacks 
from mathematical models, external disturbances, and 
unmodeled dynamics, especially for controlling nonlinear 
time-varying PMSM systems or random processes. 
Researchers have recognized that the crucial task of 
enhanced MRAC for PMSM systems is to reject various 
external disturbances and improve robustness in various 
uncertainties. Landau et al. proposed a direct feedback 
adaptive regulation scheme to suppress multiple unknown 
and/or time-varying vibrations, and minimized the residual 
force by applying an appropriate control effort through the 
internal model principle and Youla-Kucera parameterization 
[6]. However, performance is affected by the model and 
unmodeled dynamics because this approach introduced a 
dynamic model for external disturbances to the controller. In 
fact, the effects of disturbances or uncertainties are related to 
the variations of the generalized error of MRAC. In an ideal 
case, when no disturbance or unmodeled dynamics is present, 
the tracking error converges to zero. In a non-ideal case, the 
mean-square tracking error is of the order of magnitude of 
the modeling error provided by the unmodeled dynamics 
that satisfies a norm-bound condition [7]. Therefore, a 
prediction-identification model based adaptive control 
method was proposed for uncertain systems with time-
varying parameters in the presence of bounded external 
disturbances, and the desired tracking performance was 
achieved by feeding back the state prediction error to the 
identification model. The desired closed-loop properties 
were obtained when the error feedback gain was 
proportional to the square root of the adaptation rate [8]. 
However, an apparent drift of adaptive gains may 
occasionally arise, eventually leading to closed-loop 
instability. For the drift of adaptive gains, a parameter 
projection algorithm can be used to solve the problem [9]. 
Gao et al. investigated the robust indirect MRAC with the 
normalized adaptive law for a class of discrete-time systems 
with unmodeled dynamics and bounded disturbances [10], 
but the constructed parameter estimation algorithm was 
affected by the modeling process. 

Improved performances were achieved for the PMSM 
control system; however, single nonlinear approach was 
often applicable to solve a certain problem. Therefore, the 
researchers were committed to seek valid integrated 
nonlinear control techniques, and numerous new branches of 
MRAC have emerged. At present, the neural network-based 
MRAC approach [11], [12], [13] and fuzzy MRAC approach 
[14], [15] are two successful integrated approaches. The 
former adopted the neural network learning algorithm as the 
adaptive control algorithm and trained the adjustment 
parameter on-line or off-line with the neural network 
technique. Compared with the traditional MRAC, the 
approach leads to improved rejection of external 
disturbances and enhances the robustness. However, the on-
line or off-line train process is complex and implies the 

structure information of the controlled plant. The fuzzy 
MRAC approaches used the fuzzy basis function expansion 
to represent the unknown parameters and changed the 
identification problem from identifying the original 
unknown parameters to identifying the coefficients of fuzzy 
basis function expansion. The approach provides higher 
adaptation ability than the basic adaptive control and solves 
the problem of stability of nonlinear systems with parameter 
uncertainties. However, selecting of fuzzy rules and 
membership functions depends on a priori knowledge. 
Moreover, variable structure model reference adaptive 
controls [16] can improve the robustness and fault tolerance 
and ensure disturbance rejection properties, but the chatter 
has always been the main obstacle of the approach 
application. These integrated strategies have a common 
problem that is subject to models with known structure, rules, 
training process, or prior knowledge. When the controlled 
plant is unknown or difficult to describe with mathematical 
forms, the strategies cannot be used. Furthermore, if the 
approaches for a specific plant are extended to a new actual 
system, the performance becomes unpredictable. 

Actually, the input and output (I/O) information are 
significant for studying the behavior and uncertainties of 
PMSM. Thus, we were motivated to study data-driven 
control approaches, which mainly concentrate on the 
importance of I/O information and design controller that 
merely use I/O data of a plant. These approaches do not 
require explicit models or structural information of the plant; 
thus, the modeling process and unmodeled dynamics 
disappear, whereas the parameter variations and external 
disturbances are suppressed. Several data-driven control 
approaches, such as simultaneous perturbation stochastic 
approximation control, multi-level recursive control, model-
free adaptive control, unfalsified control, iterative feedback 
tuning, virtual reference feedback tuning, and lazy learning, 
are currently available [17]. Compared with other 
approaches, the model-free adaptive control offers low 
computational burden, easy implementation, and strong 
robustness; thus, it is suitable for many practical applications 
[18]. The model-free adaptive control can design a common 
controller for a class of industrial process based on the real-
time I/O information and does not require any external 
measurement or training process. Wang et al. proposed a 
second-order universal model-free adaptive controller, the 
parameters of which were optimized by a gradient descent 
algorithm [19]. Jin and Qiao designed a higher-order model-
free adaptive controller for a class of nonlinear systems that 
could obtain promising results using only I/O information 
[20], [21]. However, these designs do not fully utilize the 
historical I/O information of the controlled plant and use 
incomplete or partial missing information, thereby causing 
poor robustness, oscillation, and instability of these systems. 
Model-free predictive control [22], [23] and model-free 
iterative learning control [24], [25], have been developed 
and integrated model-free adaptive control with advanced 
control strategies to improve their performance. However, 
the model-free predictive control greatly depends on the 
prediction accuracy of the model, and the model-free 
iterative learning control is limited to the plant of trial 
repetition in finite time intervals. 

The main work of this study attempts to improve the 
traditional MRAC with the model-free adaptive technique 
and proposes a data-driven MRAC approach for PMSM with 
uncertainties. An equivalent differential expression linear 
model was built with a time-varying parameter called 
pseudo-partial-derivative (PPD) in the sense of I/O 
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equivalence. This parameter was identified by the output 
error between the reference model and practical model based 
on the Popov criterion. Simulations were provided to 
illustrate the effectiveness of the proposed approach when 
applied to a PMSM system. 

The remainder of this study is organized as follows. 
Section 3 describes the data-driven MRAC approach that 
designs an adaptive control law based on the equivalent 
linear model for a discrete-time nonlinear PMSM system 
and presents the parameter estimation algorithm based on 
the Popov criterion. Section 4 presents a simulation on a 50 
kW PMSM drive of Toyota Prius II hybrid electric vehicles 
to illustrate the effectiveness and superior performance of 
the data-driven MRAC approach. Section 5 summarizes the 
conclusions. 
 
 
3.  Methodology 

 
3.1 Problem formulation and nonparametric dynamic 
linearization method  
The control system of PMSM can be described by the 
following discrete-time single-input single-output (SISO) 
nonlinear form. 
 

   
ω (k +1) = f (ω (k),!,ω (k − Ly ),Te(k),!,Te(k − Lu ))          (1) 

 
where ( ) mk Rω ∈  and ( ) m

eT k R∈  are the output and input at 
time k , respectively; uL  and yL  are the unknown orders 
(pseudo-orders), and ( )f ⋅ ⋅ ⋅  is an unknown nonlinear 
function. 

To guide our discussion, we developed the following 
assumptions: 

 
Assumption 1: Input and output of system (1) are 

observable and controllable, that is, for the desired bounded 
output signal *( 1)kω + , there exists a bounded feasible input 
signal that makes the practical output equal to the desired 
output. 

Assumption 2: Partial derivatives of ( )f ⋅ ⋅ ⋅  with respect 
to control input ( )eT k  are existent and continuous. 

Assumption 3: System (1) presents the generalized 
Lipschitz condition, that is, ( 1) ( )ek c T kωΔ + ≤ Δ for any k , 

where ( 1) ( 1) ( )k k kω ω ωΔ + = + − , ( ) ( ) ( 1)e e eT k T k T kΔ = − − , 

( ) 0eT kΔ ≠ , and c  is a positive constant. 
 
For the nonlinear system (1) that satisfies assumptions 1, 

2, and 3, a PPD vector ( )kθ  and ( )k bθ ≤  must exist, when 

( ) 0eT kΔ ≠  for all k , such that system (1) can be 
transformed into the following equivalent linear model. 

 
( 1) ( ) ( )ek k T kω θΔ + = Δ                                 (2) 
 
Equation (2) is defined as the universal linear model of 

system (1) based on I/O information increment expression, 
which converts a complex SISO nonlinear system into a 
linear system with time-varying parameter, ( )kθ . 
 

3.2 Design of control law based on data-driven technique  
The objective of the proposed control approach is to find a 
suitable control input sequence ( )eT k  to achieve no 

difference tracking with the given desired trajectory, *( )kω . 
Considering the following control criterion function: 
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where λ  is a positive weight factor that restricts the 
variation of control inputs. The first and the second items in 
equation (3) denote the weighted output error and weighted 
input error, respectively, of previous i  or j  sampling 
instants, which are known at the k  sampling instant. ia  and 

jb  are the weight factors, which directly determine the used 
region and used degree of previous I/O information, 

respectively. 1 2( , , , )
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       (4) 

 
Remark 1: The control criterion function (3) differs 

from the general function in [17]. This function contains not 
only the control inputs included in a uL  (input pseudo-
orders) sliding time window before the current instant but 
the output error in a yL  (output pseudo-orders) sliding time 
window before the current sampling instant. This function 
can satisfy the different control requirements of complex 
systems by selecting suitable values of uL  and yL  to 
achieve high freedom and accuracy. 

Remark 2: The control law (4) was designed merely 
using the I/O measurement data of the controlled plant; it 
has a recursive form. It is different from the control law in 
[17] and has no relations with any explicit model dynamics 
and structural information of the plant. 

 
3.3 Parameter estimate based on Popov criterion 
Complex behaviors of the controlled plant, such as nonlinear, 
parameter variations and unmodeled dynamics, are 
integrated into the time-varying parameter ( )kθ . Therefore, 
the dynamic characteristics of ( )kθ  may be extremely 
complex and cannot be easily mathematically described, but 
their values may not be sensitive to time-varying factors and 
can easily be estimated. 
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An adaptive mechanism was employed in this study to 
estimate ( )kθ  and cause the generalized error to converge to 
zero, considering that MRAC can adjust the controller 
parameters according to the error between the reference 
model and practical model. 

The second order Auto-Regressive integrated Moving 
Average (ARMA) model of PMSM is described as follows, 
when the load is treated as disturbance: 
 
( 1) (1 ) ( ) ( 1) ( )ek a k a k b T kω ω ω+ = + − − + Δ            (5) 

 
where /BT Ja e−= , /(1 ) /BT Jb e B−= − ; B  is the viscous 
friction coefficient, J  is the rotational inertia, and T  is the 
sample period. 

The reference model is set as follows: 
 
( 1) ( ) ( 1) ( ) ( 1)m m m m m m mk a k b k c r k d r kω ω ω+ = + − + + −    (6) 

 
where ( )m kω  is the output of the reference model and 

*( ) ( )r k kω=  is the input of reference model. 
To overcome the one-step delay of the discrete algorithm, 

a priori variable and a posteriori variable are introduced: 
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The priori and posteriori generalized errors are as 

follows: 
 
0 0( 1) ( 1) ( 1)me k k kω ω+ = + − +                          (9) 

 
( 1) ( 1) ( 1)me k k kω ω+ = + − +                              (10) 

 
Equation (10) can be rewritten by subtracting (8) from 

(6), as follows: 
 
( 1) ( ) ( 1) ( )m me k a e k b e k y k+ = + − +                  (11) 
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A linear compensator is selected as follows: 
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An equivalent nonlinear time-varying feedback system 

can be formed using Equations (11) and (14). 
According to the Popov criterion, the asymptotic 

stability of the system must satisfy the two following 
conditions: 

 
(1) Transfer function of forward channel is strictly 

positive; 
(2) Feedback channel satisfies the Popov integral 

inequality. 
The transfer function of the forward channel is as 

follows: 
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To confirm the strictly positive ( )G z , the values of 1d  

and 2d  are selected as follows: 1
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To hold Equation (16), the following parameter adaptive 

estimation law must be selected: 
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where 1α , 2α , and β  are gain coefficients. 

The structure of the data-driven MRAC approach, which 
is based on this design, is shown in Figure 1. In this 
approach, a model-free controller is designed with only the 
I/O information of PMSM to achieve a practical output. The 
practical output is compared with the output of the reference 
model, and a measurement of difference between the actual 
and desired performance is obtained. This information, 
together with the practical output and the controller output, 
is used by an adaptive mechanism to directly estimate the 
real-time parameter ( )kθ  to force asymptotically the 
generalized error to zero. When the output tracking 
characteristic is influenced by the parameter variations, 
unmodeled dynamics or external disturbances, the estimator 
can correct the adjustable parameter ( )kθ  real-time to reach 
the output of the reference model and achieve no difference 
tracking. 

Model free 
controller

Controlled 
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model

Estimator 

Differentiator 
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( 1)e k+

( )eT k

( 1)eT kΔ −

 
Fig. 1. System structure block diagram based on data-driven MRAC 

 
 

4. Result Analysis and Discussion 
 

In this section, an example on a 50-kW PMSM control 
problems is presented to show the tracking performance of 
the proposed data-driven MRAC approach. 
 
4.1 Data generator of a practical PMSM system 

 
A practical PMSM served as an I/O data generator to 
implement the proposed approach. No explicit model and 
structural information of the PMSM were included in the 
controller design. 

The nonlinear model of PMSM is described as follows 
[26]: 
 

   

!θm =ωm

mr 2 !ωm = Te −TL −Tfriction −Tripple  

⎧
⎨
⎪

⎩⎪
                 (18) 

 
where mw  and mθ  are the mechanical angular velocity and 
mechanical angle, respectively. eT , LT , frictionT , and rippleT  
are the electromagnetic torque, load torque, friction torque, 
and ripple torque, respectively. m  is the slide weight, 
including load. r  is the outer diameter of the rotor. 

The friction and ripple torque are assumed to be modeled 
as follows: 
 

( / )

0

( ( ) )sgn( )

sin( )

m md
friction c s c v m m

ripple m

T T T T e T
T F

δω ω ω ω

ω θ

−⎧ = + − +⎪
⎨

=⎪⎩
    (19) 

 
where cT  is the minimum level of coulomb friction torque, 

sT  is the level of static friction torque, vT  is the viscous 
friction torque, mdω  is the desired angular velocity, 0ω  is 
the angular velocity of the ripple torque, F  is the swing of 
the ripple torque, and δ  is an additional empirical 
parameter. 

Using a practical PMSM system (the parameters of 
which are listed in Table 1) and discretizing equation (18) 
yields the following: 
 

2(z( )/ z ( ))

( 1) ( ) ( )                                  
1z( 1) ( ) ( ( ) 8 (1.6 1.6

1.152
1.6 ( ))sgn(z( )) 1.6sin(900y( )))

dk k

y k y k z k

k z k u k e

z k k k

−

+ = +⎧
⎪
⎨

+ = + − − +⎪⎩
+ −

  (20) 

 
where ( )y k  and ( )z k  are the system outputs denoting mθ  
and mw , respectively; ( )u k  is the system control input eT . 
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Table 1. PMSM system parameters 
Parameters Symbols Values Units 

Rated torque NT  400 Nm  

Rated velocity n  6000 rpm  

Slide weight m  45 kg   

Outer diameter of rotor r   161.9 mm   

Minimum coulomb friction torque cT   1.6 Nm  

Static friction torque sT  3.2 Nm  

Viscous friction torque vT   1.6 Nm  

Additional parameter δ   2 −   

Swing of the ripple torque F   1.6 Nm  

Angular velocity of the ripple torque 0ω   900 /rad s  

 
The desired trajectory in the simulations was set as 

follows: 
 

*

100,        0 100
( 1) 200,      100 300

150,         300

k
z k k

k

≤ <⎧
⎪

+ = ≤ <⎨
⎪ ≥⎩

                (21) 

 
Selecting 1.321ma = , 0.497mb = − , 0.098mc = , and 

0.078md = , the reference model is described as follows: 
 

* *

( 1) 1.321 ( ) 0.497 ( 1)

0.098 ( ) 0.078 ( 1)
m m mk k k

k k

ω ω ω

ω ω

+ = − −

+ + −
             (22) 

 
4.2 Control parameters selection and simulation analysis 
In the proposed control approach, the introduction of the 
positive weight factor λ  restricts the variations of control 
inputs and overcomes the steady state error. Theoretical 
analysis shows that the suitable option can guarantee the 
stability or improve the performance of the control system. 
Moreover, the orders uL  and yL  determine the usage of the 
region and degree of previous I/O information. The 
simulation is started and performed under the following 
conditions, considering the two influence factors: 
 
4.2.1 Influence of weight factor λ   
For simplification, the first order of control law was 
employed and the gain coefficients were selected as 

1 2 0.02α α= =  and 0.004β = . The simulation was started 
and performed with the following three conditions: 0.1λ = , 

0.5λ = , and 1λ = . Figure 2 shows the results and Table 2 
lists the parameters. 
 
Table 2. Simulation parameters 

λ  System initial values Controller parameters 

0.1λ =  
or  
2λ =  

or 1λ =  

(1) 1y = − , (2) 1y = , 
(1) 0u = , (1) 0uΔ = , 

(1) (2) 1v v= = , (1) 2θ =  

 α1 =α 2 = 0.02 , 0.004β = , 

1u yL L= = , 

(1,0, ,0)Ti ja b= = L  
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Fig. 2. Velocity responses with different values of λ  

 
The values of weight factor λ  strongly influenced the 

system dynamic properties. The velocity overshoot 
decreased with increasing λ , indicating an improved 
disturbance rejection and reduced rapidity. When the value 
of weight factor λ  was less than 0.1 or greater than 10, then 
the system presented poor performance. Therefore, stability 
and rapidity must be balanced when selecting the value of 
λ  in practical applications. Moreover, Figure 2 illustrates 

that PPD is a slow time-varying bounded parameter related 
to the system action point or system dynamics. 
 
4.2.2 Influence of the pseudo-orders uL  and yL   
The pseudo-orders uL  and yL  indicate the problem of how 
and/or how much to use the I/O information. Exploiting a 
large amount of historical I/O information can improve 
design accuracy. However, the excessive information will 
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lead to high burden of the controlled system and low 
sensibility to the tuning of desired trail. The simulation was 
started with 1 2 0.02α α= = , 0.004β = , and 1λ = , and 
performed with different values of pseudo-orders under the 
condition of nearest sample data of more than 40%. Figure 3 
shows that the robustness of the adaptive control is enhanced 
by exploiting additional historical information. Table 3 lists 
the parameters. 
 
Table 3. Simulation parameters 
Orders System initial values Controller parameters 

1u yL L= =  
(1) 1y = − , (2) 1y = , 
(1) 0u = , (1) 0uΔ = , 

(1) (2) 1v v= = , (1) 2θ =  

1 2 0.02α α= = , 0.004β = , 
1λ = , 

(1,0, ,0)Ti ja b= = L  

3u yL L= =  

(1) y(2) y(4) 1y = = = =L , 
(1) u(2) (3) 0u u= = = , 
(1) (2) (3) 0u u uΔ =Δ =Δ = , 

(1) (2) (3) (4) 1v v v v= = = = , 
(1) (2) (3) 2θ θ θ= = =  

1 2 0.02α α= = , 0.004β = , 
1λ = , 
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(1) (2) (6) 1v v v= = = =L , 
(1) (2) (6) 2θ θ θ= = = =L  

1 2 0.02α α= = , 0.004β = , 
1λ = , 
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The simulation results in Figure 3 show that the system 
response is highly precise, has a small overshoot, and is 
highly stable when the introduction of additional historical 
I/O information increases the amount of orders. However, 
using excessive historical information generates oscillations 
at the mutation instant of the desired output. 
 
4.3 Performance analysis in the case of data loss 
 
In the process of data sampling or data transmission, the 
control system inevitably emerges with problems of data 
loss or data incompletion. To analyze the output 
performance in this case, a variable was defined as follows: 
 

1,     (k) is not loss
( )

0,     (k) is loss
y

k
y

γ
⎧

= ⎨
⎩

,                           (23) 

 
( ) ( ) ( )y k k y kγ= ,                                   (24) 

 
where ( )y k  denotes the output in the data loss condition. 

For simplification, we selected a first order system with 
data loss at the mutation instant and constant interval of the 
desired output, that is, ( ) 0kγ =  when 95 105k≤ ≤  and 
150 200k≤ ≤ . Figure 4 illustrates the robustness of the 
proposed approach. 
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Fig. 3. Velocity responses with different uL  and yL  values 
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Fig. 4. Velocity responses in the case of data loss 
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Simulation results in Figure 4 imply that the 
performance of the system emerged high oscillation and 
overshoot in the case of data loss at the mutation instant of 
the desired trail, and stability of the system were still 
guaranteed after normal data were recovered. On the 
contrary, the constant interval was partially influenced. To 
weaken the negative impact of data loss, some approaches, 
such as weighted average, adaptive filtering, and data 
prediction, can be involved to satisfy the accuracy demand. 

The simulations indicated the following: 
(1) The nonlinear PMSM system demonstrates 

satisfactory adaptability and stability under the proposed 
data-driven MRAC approach.  

(2) The stability and rapidity of the PMSM system can 
be balanced by selecting the appropriate weight factors and 
orders. High values of λ , uL , and yL  indicate high stability 
for the controlled plant, whereas low values indicate 
favorable rapidity. 

(3) Data loss or data incompletion causes large 
oscillation and overshoot at the mutation instant of the 
desired trail. High loss rates imply poor stability, but the 
data-driven MRAC approach ensures the convergence of the 
output error when normal data are recovered. 
 
 
5. Conclusions 
 
To improve the performance of traditional MRAC and 
suppress the influences of the modeling process, external 
disturbances, and unmodeled dynamics, an enhanced MRAC 
approach based on data-driven technique for PMSM was 
proposed. The equivalent linear model of PMSM was 
introduced in detail and the data-driven adaptive control law 
and the parameter estimate algorithm were presented. The 
following conclusions were obtained via theoretical analysis 
and simulation: 

(1) The equivalent differential expression linear model, 
which was derived from I/O information, provides a highly 
general approach for the modeling process of nonlinear 

systems with uncertainties, thereby solving the problem of 
depending on the parametric model or structural information 
of the traditional MRAC approach.  

(2) Favorable asymptotic convergence and improved 
disturbance rejection could be achieved through appropriate 
parameter coordination. The weight factor strongly 
influences the dynamic properties. High weight enhances the 
disturbance rejection and negatively affects the rapidity of 
the controlled system. Moreover, increasing pseudo-orders 
strengthens the robustness and fault tolerance. Furthermore, 
the high percentage of the nearest sample data means 
improved sensibility. Stability, rapidity, and disturbance 
rejection must be balanced when implementing the proposed 
approach according to different control targets. 

(3) Data-driven MRAC, without support of the control 
plant model, designs the controller only with the I/O 
information and guarantees stability even if data are lost (not 
completely loss) or incomplete. When the loss rate is high, 
the oscillation and overshoot are high. Therefore, the 
integrity of the I/O information determines the tracking 
accuracy of the approach, thereby putting forward high 
requirements for data detection and extraction. 

The proposed data-driven MRAC approach solves the 
problem of depending on the parametric model or structural 
information of the PMSM drives and is especially useful for 
nonlinear motor systems with uncertainties. This approach 
provides a valuable reference for actual nonlinear systems 
that are typically difficult to model and control. 

In spite of the progress to enhance the MRAC approach, 
the theoretical guidance or rules on the selection of 
parameter initial values and the general parameter pre-
setting method remain the open issues to be addressed in the 
future. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  
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