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Abstract 
 

Examining the driving factors of Chinese commercial building energy consumption (CCBEC) plays an important role in 
Chinese building energy efficiency work. However, Chinese building energy efficiency work is currently challenged by 
the lack of effective approaches to examine the driving factors affecting CCBEC. To improve the constitution of the 
CCBEC reduction measures and strategies, the Stochastic Impacts by Regression on Population, Affluence, and 
Technology (STIRPAT) model and ridge regression analysis were applied to examine the driving factors of CCBEC data. 
Results show that: (1) All of the five driving factors (i.e., population, urbanization rate, floor area per capita of existing 
Chinese commercial buildings, GDP index in the Chinese tertiary industry sector, and CCBEC intensity) have positive 
effects on CCBEC during the period of 2000–2015. (2) The importance of the five driving factors can be expressed by 
their different standardized beta values in decreasing order, as follows: CCBEC intensity (21.03%), floor area per capita 
of existing Chinese commercial buildings (20.93%), population in China (20.68%), urbanization rate in China (20.64%), 
and GDP index in the Chinese tertiary industry sector (19.24%). (3) The goodness of fit for the regression analysis proves 
that the proposed method is also applicable at the provincial or regional level. Furthermore, this study proves the 
feasibility of examining the driving factors affecting CCBEC using the STIRPAT model and ridge regression analysis 
and provides new approaches for improving the constitution of the CCBEC reduction measures and strategies. 

 
 Keywords: Chinese commercial building energy consumption, Driving factors, STIRPAT model, Ridge regression analysis
 ___________________________________________________________________________________________ 
 
1. Introduction 
 
As China has become the largest carbon emitter worldwide, 
Chinese building energy efficiency work has faced serious 
challenges given that the Chinese building sector is the 
second largest sector in Chinese national energy 
consumption [1]. Chinese commercial building energy 
consumption (CCBEC) is a typical type of building energy 
consumption (BEC) and accounts for more than 35% of the 
Chinese national BEC in the current stage [2]. The total 
quantity of CCBEC is increasing rapidly because of the 
acceleration of urbanization and the unprecedented 
development in the tertiary industry sector in China. If the 
growth trend of the CCBEC continues, then the CCBEC is 
expected to exceed 490 million tons of standard coal 
equivalent (tce) in 2030 [3, 4]. This condition can lead to 
severe environmental pollution and hinder the sustainable 
development strategy of China. Therefore, conducting 
CCBEC reduction at the national level is considered urgent 
given that the energy saving potential in the Chinese 
commercial building sector is more obvious than that in the 
Chinese residential building sector. Examining the driving 
factors affecting CCBEC, which may directly influence the 
constitution of the CCBEC reduction measures and 
strategies, is significant to do that efficiently [5]. 

 However, the quantification of official CCBEC data 
significantly lags behind, thereby seriously affecting the 
work of examining the driving factors of CCBEC as this 
work requires specific CCBEC data. Although Chinese 
building energy efficiency work has largely progressed in 
several aspects, such as laws, incentive policies, and 
building energy efficiency technology, several shortages still 
exist in quantifying basic BEC data [2]. The main reasons 
are as follows: The official statistical system of BEC data at 
the national level is still a work in progress. In the statistical 
system of Chinese energy consumption, BEC has been 
regarded separately as an independent division of energy 
consumption, but is scattered in different energy 
consumption statistics of various societal divisions. Thus, 
accurate CCBEC data are unavailable. 
 The examination of the driving factors affecting CCBEC 
should be achieved at a quantitative analysis level and can 
help the government formulate and implement targeted goals 
and policies for improving the constitution of the CCBEC 
reduction measures and strategies to promote the 
development of Chinese building energy efficiency work in 
the upcoming stage. In other words, it is an urgent and 
significant work to examine the driving factors affecting 
CCBEC and conducting further analysis on the CCBEC 
reduction measures and strategies on the basis of the results. 
 This study aimed to establish an effective method for 
examining the driving factors of CCBEC using relatively 
mature and credible CCBEC data. Subsequently, the results 
from 2000 to 2015 were obtained and further analyzed. 
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2. State of the art 
 
As a prerequisite in examining the driving factors affecting 
CCBEC, numerous previous works have documented 
different approaches for estimating CCBEC data because 
official CCBEC data are still unavailable at the current stage 
[2]. A few scholars established relatively systematic and 
sustainable CCBEC data estimation models to largely fill the 
lack of data collection about CCBEC. The most 
representative model is the China Macroscopic Building 
Energy Consumption Statistical System (CMBECSS), which 
was first established by Chongqing University in 2010. The 
original data sources of CMBECSS are the energy balance 
sheets of the China Energy Statistical Yearbook. CMBECSS 
implemented weight combination and error correction to 
integrate the distributed energy consumption related to the 
national BEC, and this system effectively estimated the 
Chinese BEC from 1985 to 2009 [3]. The updated data of 
this second–generation system (i.e., CMBECSS Ver. 2.0) in 
2015 indicated a BEC value of 859 million tce at the 
national level, accounting for 19.98% of the national energy 
consumption in the said year. Thereinto the value of CCBEC 
is 332 million tce, accounting for 38.65% of the Chinese 
BEC [6, 7]. 
 Given the lack of reliable supporting data of CCBEC, 
studies on the effective examination of the driving factors of 
CCBEC are still seriously inadequate. However, numerous 
previous works have proven the feasibility of examining the 
driving factors affecting Chinese residential energy 
consumption through the Stochastic Impacts by Regression 
on Population, Affluence, and Technology (STIRPAT) 
model given that the data source of Chinese residential 
energy consumption is easy to obtain. Several works directly 
replaced the aforementioned data approximation as living 
energy consumption of Chinese households because the data 
source of living energy consumption of Chinese households 
is clearly published in the China Energy Statistical Yearbook 
[8, 9, 10, 11, 12, 13]. 
 The aforementioned studies introduced several relatively 
mature and credible estimation methods for CCBEC data 
and an effective approach for examining the driving factors 
affecting BEC. The data shown in the CMBECSS database 
are relatively credible, as this systematic estimation method 
has been widely accepted and referenced by numerous 
relevant studies. Furthermore, the STIRPAT model is mostly 
applicable to identify and examine the driving factors 
affecting energy consumption in different societal divisions 
[14]. Given that BEC is a typical type of energy 
consumption, this method applies equally to the building 
sector [3]. Notably, studies on the effective examination of 
the driving factors of CCBEC are still lacking, which means 
that developing an effective method to overcome such 
problem at the current stage is an urgent task. Accordingly, 
this study mainly aimed to establish an effective approach 
for examining the driving factors affecting CCBEC and fill 
the lack of research direction. On the basis of CCBEC data 
obtained from the CCBECSS database, this study 
established the equation of CCBEC based on its relevant 
driving factors through the STIRPAT model. Subsequently, 
this study ran a regression analysis of the data from 2000 to 
2015 based on the ridge regression approach. 
 The remainder of the paper is organized as follows. 
Section 3 introduces the principles of the STIRPAT model 
and ridge regression analysis. Subsequently, the model 
variables are explained. Furthermore, the sources of 
corresponding data are introduced. Section 4 provides the 

results of ridge regression analysis and a further discussion 
of these results. Section 5 presents the conclusions of the 
study. 
 
 
3. Methodology 
 
3.1 STIRPAT model 
The STIRPAT model proposed in this study is essentially a 
derivative version of the equation of Human Impact, 
Population, Affluence, and Technology (IPAT). Numerous 
previous studies have documented the development of the 
IPAT and STIRPAT models, and the evidence is presented 
in this section. Ehrlich and Holdren [15] established a well–
known method called the IPAT equation to reveal the 
influence of environmental pressure on population growth, 
economic development, and technological advancements. 
The method is expressed in Eq. (1): 
 

(Human Impact) (Population) (Technology)(Affluence)I P A T= × × (1) 
 
 During the development of the IPAT equation, Dietz and 
Rosa [16] contributed significantly by proposing the 
STIRPAT model based on the IPAT equation to overcome 
its weakness, as expressed in Eq. (2): 
 

b c dI a P A T e× × × ×=                              (2) 
 
 In this case, I, P, A, and T reflect the same meanings as 
in Eq. (1). a is a model coefficient, b, c, and d represent the 
exponentials of the independent variables (i.e., P, A, and T), 
and e is the random error of the STIRPAT model. The 
STIRPAT model is often converted into the logarithmic 
linearization to achieve the practicability of regression 
analysis [17], as expressed in Eq. (3): 
 
lnI lna blnP clnA dlnT lne= + + + +                (3) 
 
 The IPAT equation and the STIRPAT model have been 
widely appreciated and applied in energy economics, 
environmental science, and many relevant fields since its 
introduction [18]. Notably, the STIRPAT model exhibits 
excellent adaptability to the driving factors. In this regard, 
the original STIRPAT equation allows the addition of a 
number of relevant variables and the transformation of the 
model into an extended version as long as the dimensions of 
these variables are reasonable [16, 17]. This prominent 
advantage of the STIRPAT model significantly enriches the 
types of relevant driving factors in this study. In further 
exploring the mechanism of CCBEC (E), considering its 
specific characteristics, and searching for supporting 
references from numerous relevant previous works, this 
study expanded the original STIRPAT model using several 
meaningful variables obtained from the population, 
affluence, and technology levels, respectively. The extended 
version of the STIRPAT model is expressed in Eq. (4): 
 
lnE a blnP clnU dlnA elnTI flnEI= + + + + +       (4) 
 
 In this case, a, b, c, d, e, and f denote the model 
coefficients. These variables, as shown in Table 1, will be 
further discussed in the subsequent section. 
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3.2 Variables and data collection 
Eq. (4) involves six main variables, as shown in Table 1. All 
of the variable data used in this study were obtained from the 
China Statistical Yearbook for the period 2000–2015, except 
for the CCBEC data. Given that the statistical system of 
CCBEC is still a work in progress, official CCBEC data are 
unavailable. Thus, this study referred to previous studies 
(CCBEC data in CMBECSS Ver. 2.0) that are relatively 
mature and credible [7]. The variable data are shown in Figs. 
1 to 3. 
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Fig. 1. Variation trend of CCBEC and its intensity in 2000–2015 
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Fig. 2. Variation trend of floor area per capita of existing Chinese 
commercial buildings and GDP index in the Chinese tertiary industry 
sector in 2000–2015 
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Fig. 3. Growth trend of the population and urbanization rate in China in 
2000–2015 

 
Table 1. Declaration of model variables 

Symbol Variable Unit Declaratio
n 

E CCBEC 410  tce  – 
P Population in China 7  pe10 rsons  – 

U Urbanization rate in 
China % – 

A 
Floor area per capita 
of existing Chinese 

commercial buildings 
2  / pm erson  – 

TI 
GDP index in the 
Chinese tertiary 
industry sector 

1 Baseline: 
100 (1978s) 

EI CCBEC intensity 2kgce /  m  – 
 
3.3 Multicollinearity testing 
Multicollinearity reflects a situation in which multiple 
independent variables in multiple regression analysis exhibit 
significant linear correlation [19]. Accordingly, the 
standardized errors in the coefficients of ordinary least 
squares (OLS) regression analysis increase and the 
coefficient estimations change irregularly in response to a 
slight change of the data of the variables. That is, the 
stability of coefficient estimations decreases significantly 
and the study can hardly obtain believable coefficient 
estimations. The non–ignored problem may cause a false 
regression result and mislead researchers to obtain an invalid 
conclusion. 
 

( )( )
( ) ( )22

i j
XY

ji

X X Y Y
r

X X Y Y

⎡ ⎤∑ − −⎣ ⎦=
∑ − ∑ −

                          (5) 

 
An effective way to evaluate the correlations among the 

independent variables is to run an analysis of correlation 
coefficients, as shown in Eq. (5). Table 2 shows that the 
values of the correlation coefficients are generally greater 
than 0.8, which prove that these independent variables are 
highly significant and linear. Thus, this phenomenon 
indicates that the probability of serious multicollinearity is 
non–ignored. In general, the most effective method to check 
the multicollinearity of independent variables is to run the 
OLS regression and evaluate the values of the variance 
inflation factors (VIFs) of the variables. The VIF is 
expressed in Eq. (6): 
 

2 1(1 )i iVIF R −= −                           (6) 
  

2 1 2(1 ) 10    0.9i i iVIF R R−= − ≥ ⇒ ≥           (7) 
 
Table 2. Correlation test results for the driving factors of 
CCBEC 

  lnE lnP lnU lnA lnTI lnEI 

lnE 1      

lnP 0.992 1     

lnU 0.994 0.999 1    

lnA 0.959 0.984 0.980 1   

lnTI 0.987 0.998 0.998 0.981 1  

lnEI 0.815 0.742 0.756 0.618 0.733 1 

 
Numerous published works have provided evidence that 

a VIF exceeding 10 indicates a non–ignored 
multicollinearity [20, 21], and this situation is expressed in 
Eq. (7). Examining multicollinearity in this study is 
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necessary because the value of multicollinearity is a 
prerequisite in choosing the suitable type of regression 
analysis method [20]. With SPSS 22.0, the time–series data 
involved in the five types of variables discussed in Section 
3.2 were introduced into Eq. (4) utilizing OLS regression 
analysis, as shown in Table 3. VIF testing showed that the 
VIFs of the independent variables are generally greater than 
10, and this situation reflects severe multicollinearity 
existing among the independent variables. Given the severe 
multicollinearity among the variables, this study determined 
that the OLS regression analysis is unsuitable for Eq. (4). 
Thus, an improved regression method is required. 
 
Table 3. OLS regression analysis results for the driving 

factors of CCBEC 

Model 
(lnE) 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Collinearity 
Statistics 

B Standardized 
Error Beta VIF 

Constant 22.090 10.986 0 0 

lnP –3.995 2.526 –0.270 1227.363 

lnU 0.272 0.647 0.101 2427.363 

lnA 1.122 0.138 0.782 390.861 

lnTI 0.091 0.097 0.117 672.904 

lnEI 1.109 0.091 0.370 39.287 

 
3.4 Ridge regression analysis 
This study employed ridge regression analysis to achieve a 
regression analysis for Eq. (4) to overcome the risk of 
multicollinearity. Ridge regression analysis is one of the 
most well–known biased estimations established by Hoerl 
and Kennard [22] and has been widely appreciated and 
applied since it was introduced. Currently, ridge regression 
analysis is still one of the most important and effective 
research tools used to overcome multicollinearity. Ridge 
regression analysis can be regarded as an improved OLS 
regression method, which provides a more stable and 
reliable coefficient estimation than OLS regression analysis 
when severe multicollinearity exists. Notably, the 
standardized errors in ridge regression analysis are less than 
that in OLS regression analysis. Notably, ridge regression 
analysis requires a key coefficient (i.e., k) to improve the 
stability of coefficient estimations. In general, the value of k 
should not be large and depends on the variation trends of 
ridge traces [22]. 
 
 
4. Results analysis and discussion 
 
4.1 Outputs of ridge regression analysis 
With NCSS 2007 (as shown in Figs. 4 and 5), the time–
series data involved in the five types of variables presented 
in Table 1 were introduced into Eq. (4) utilizing ridge 
regression analysis. Fig. 6 indicates the clear and significant 
ridge traces of independent variables and the variation trends 
of the VIFs of the variables are shown in Fig. 7. 

From the comparisons shown in Fig. 6, all of the ridge 
traces are relatively gradual and stable when  0.12k = . Thus, 
this study selected  0.12k =  to assess the ridge regression 
results, as shown in Table 4. 
 

 
Fig. 4. The main interface of NCSS 2007 
 

 
 
Fig. 5. The running interface of ridge regression analysis in NCSS 2007 
 
 

 
Fig. 6. Variation trends of the ridge traces for the driving factors of 
CCBEC 
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Fig. 7. Variation trends of the VIFs for the driving factors of CCBEC 
 
 
Table 4. Ridge regression results for the driving factors of CCBEC 

Parameter Result 

k 0.12 

Regression 
Coefficients 

 B Beta 

lnP 3.0644 0.2068 

lnU 0.5569 0.2064 

lnA 0.3004 0.2093 

lnTI 0.1486 0.1924 

lnEI 0.6308 0.2103 

Constant –10.9527 0 

R 0.9988 
2R  0.9975 

Adjusted 2R  0.9963 

Standardized Error 0.0228 

F Value 808.2744 

Significance F 0.0000000 

VIFs 

lnP 0.1048 

lnU 0.0821 

lnA 0.4212 

lnTI 0.2775 

lnEI 1.1720 

 
4.2 Data quality control 
As indicated in Table 4, the regression coefficients of all 
variables are significant at the level of 0.05. Given that 2R  is 
0.9975, the overall fits reflect satisfactory results. In addition, 
the F statistic value is significant at the level of 0.01 and the 
VIF of each variable is less than 10. Therefore, this study 
successfully obtained the fitting equation, as expressed in Eq. 
(8): 
 
ln 3.0644ln 0.5569ln 0.3004ln
0.1486ln 0.6308ln 10.9527
E P U A

TI EI
= + +

+ + −
      (8) 
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Fig. 8. The goodness of fit for ridge regression analysis 
 

As shown in Fig. 8, the comparison analysis between 
the fitting and actual values indicates that the goodness of fit 
obtained good effects, which also largely proves that the 
proposed driving factor examination method for CCBEC in 
this study is also applicable for examining the driving factors 
affecting commercial BEC at the provincial or regional level 
if credible data of commercial BEC at these levels exist. 
Given that the current structure of the STIRPAT model does 
not require additional data involving specific regional 
characteristics, this method reflects the universal rules of 
regression analysis on examining the driving factors 
affecting commercial BEC at the regional level. 
 
4.3 Root cause of the different contributions of driving 
factors affecting CCBEC 
The signs of the regression coefficients shown in Table 4 
reflect that all driving factors have positive effects on 
CCBEC. The importance of these driving factors can be 
expressed by the absolute values of their standard regression 
coefficients in decreasing order, as follows: EI > A > P > U 
> TI. A further analysis of the basis of the aforementioned 
results is presented in this section. 

As shown in Table 4, the increasing urbanization rate 
(U) has a positive influence on CCBEC with a standard 
regression coefficient value of 0.2064 and the growing scale 
of population (P) has a rather significant, positive influence 
on CCBEC with a standard regression coefficient value of 
0.2068. Table 4 shows that every 1% increase in P will 
result in a 3.0644% increase in CCBEC, compared with a 
0.5569% increase in CCBEC from every 1% increase in U. 
Given the acceleration of urbanization and the 
unprecedented rate of economic development, the rapid 
growth of the urban population scale in China directly 
results in the increasing CCBEC, which exhibits a large total 
quantity and a rapid growth rate [3]. Thus, the increasing P 
and U promote the growth of CCBEC. 

Compared with the Chinese population scale and its 
urbanization level, the floor area per capita of existing 
Chinese commercial buildings (A) has a rather significant, 
positive influence on CCBEC. Table 4 shows that A 
contributes a positive influence with a beta value of 0.2093. 
Moreover, every 1% increase in A will result in a 0.3004% 
increase in CCBEC. The increase in floor areas in the 
existing Chinese commercial building sector leads to the 
direct and significant increase in CCBEC given that the 
increase in floor areas requires a high quality and a large 
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scale of building equipment system (e.g., high lighting, 
cooling, and heating levels in commercial buildings). Thus, 
with the unprecedented rate of urbanization development in 
China, the large scale of floor areas in the existing Chinese 
commercial building sector results in high CCBEC. 

In addition, CCBEC is a typical type of consuming 
energy consumption and its growth is mainly caused by the 
sustained economic development. Thereby, analyzing the 
development of the relevant industrial department is 
necessary. In this regard, GDP index in the Chinese tertiary 
industry sector (TI) shows a partly positive contribution to 
CCBEC with a beta value of 0.1924. Moreover, every 1% 
increase in TI will result in a 0.1486% increase in CCBEC. 
Given that the development of tertiary industry largely 
occurs in the commercial building sector, CCBEC has 
become one of the basic requirements for the sustained 
economic growth and the acceleration of economic 
development in China. Furthermore, the environmental 
Kuznets curve exhibits an inverted U–shaped relationship 
between regional economic development and regional 
environmental pressure [23]. Given the actual status of per 
capita affluence level in China, the stage of the 
Environmental Kuznets Curve about CCBEC lies before the 
crest. 

Given that the characteristic of the variation trend of 
CCBEC intensity (EI) fluctuates during the period of 2000–
2015, evaluating the positive or negative contribution of EI 
to CCBEC at the qualitative level is difficult. Table 4 
indicates that EI has a prominent, positive influence on 
CCBEC with a beta value of 0.2103. Moreover, every 1% 
increase in EI will result in a 0.6308% increase in CCBEC. 
However, the positive contribution of EI to CCBEC 
decreased gradually during the period of 2011–2015. This 
non–ignored phenomenon proves that Chinese commercial 
building energy efficiency work exhibited a good 
implementation effect on that period. In the period of 2011–
2015, the government deepened the BEE policy system in a 
series of ways, such as laws and regulations, technical 
standards, propaganda and training, market mechanism, 
economic incentives, and technological innovation. On the 
basis of the considerable amount of officially published 
information [2], this study summarized the completion status 
of the main targets and main relevant policies of Chinese 
commercial building energy efficiency work from 2006 to 
2015, as shown in Table 5. 
 

 
Table 5. Completion status of the main targets and relevant policies of Chinese commercial building energy efficiency work 
in 2006–2015 

Target requirements Completion status 
Main relevant BEE policies 

General policies Special policies 

Supervision 
system 

These targets should be 
improved at the national 
level. 
(1) BEC statistics 
(2) Energy audit 
(3) Energy publicity 
(4) Energy efficiency 
assessment system  

Completion status at the 
national level. 
(1) 246,073 buildings 
(2) 17,826 buildings 
(3) 19,656 buildings 
(4) 8,910 buildings 

(1) The Law of PR China on 
Promoting Clean Production 
(2003) 
 
(2) The Law of PR China 
on Energy Conservation (2008) 
 
(3) Regulation on Energy 
Conservation in Civil Buildings 
(2008) 
 
(4) "The 11th Five–Year" Plan 
(2006) 
 
(5) "The 12th Five–Year" Plan 
(2011) 
 
(6) China BEE Plan (1996–2010) 
 
(7) "The 12th Five–Year" BEE 
Special Plan (2012) 

(1) GB 50189–2005 
(2) GB 50189–2015 
(3) GB/T 50908–2013 
(4) GB/T 51100–2015 
(5) CJ[2007] No.558 
(6) CJ[2011] No.207 

Supervision 
platform 

The full coverage of 
provincial BEC supervision 
platforms should be 
achieved. 

The testing BEC dynamic 
monitoring platforms have 
been piloted in 33 provinces 
and municipalities (9,000 
buildings). 

BEE retrofit of 
existing 

commercial 
buildings 

260 million m  2110 million m  

BEC per unit area of large commercial 
buildings should drop 10% at the national level. 

BEC per unit area of large 
commercial buildings 
dropped 12.25% at the 
national level. 

 
Table 5 shows that the relevant tasks have achieved 

significant results, and these achievements impelled EI to 
decrease in the period of 2011–2015. Moreover, further 
developing the Chinese commercial building energy 
efficiency work is necessary on the basis of the 
achievements shown in Table 5 in the upcoming stage given 
that this task is a prerequisite in decreasing EI consistently 
and a non–ignored foundation for considerable accumulation 
of energy savings in Chinese commercial building sector. To 
a certain extent, the results of the present examination of the 
driving factors of CCBEC can help the government 
formulate and implement targeted goals and policies for 
improving the constitution of the CCBEC reduction 
measures and strategies to promote the development of 
Chinese building energy efficiency work in the upcoming 
stage. 
 
 

5. Conclusions 
 
Examining the driving factors of CCBEC is a prerequisite in 
improving the constitution of the CCBEC reduction 
measures and strategies. In order to achieve an effective 
method to examine the driving factors affecting CCBEC, 
this study developed an approach based on the STIRPAT 
model and the ridge regression analysis to examine a series 
of driving factors of CCBEC. Moreover, a further analysis 
of key factors was also included after quality control of the 
data of ridge regression. The following conclusions can be 
drawn: 

(1) All of the five driving factors (i.e., population, 
urbanization rate, floor area per capita of existing Chinese 
commercial buildings, GDP index in the Chinese tertiary 
industry sector, and CCBEC intensity) have positive effects 
on CCBEC during the period of 2000–2015. 
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(2) The importance of the driving factors can be 
expressed by their different standardized beta values in 
decreasing order, as follows: CCBEC intensity (21.03%), 
floor area per capita of existing Chinese commercial 
buildings (20.93%), population in China (20.68%), 
urbanization rate in China (20.64%), and GDP index in the 
Chinese tertiary industry sector (19.24%). Thereafter, the 
key factors indicate that further developing the Chinese 
commercial building energy efficiency work is necessary on 
the basis of the achievements in the current stage to decrease 
the CCBEC intensity continually. 

(3) The goodness of fit of the regression analysis proves 
that the proposed method in this study is also applicable for 
examining the driving factors affecting commercial BEC at 
the provincial or regional level if credible data of BEC at 
these levels exist. Given that the current structure of the 
STIRPAT model does not require additional data involving 
specific regional characteristics, this method reflects the 
universal rules of regression analysis on examining the 
driving factors affecting commercial BEC at the regional 
level. 

This study provides an effective method to examine the 
driving factors affecting CCBEC and fills the lack of 

research on the effective examination of the driving factors 
of CCBEC. Accordingly, this work can help the government 
identify the key factors and improve the constitution of the 
CCBEC reduction measures and strategies in the upcoming 
stage. 

Several additional driving factors, such as energy 
structures or energy prices in different commercial buildings, 
also exert important effects on CCBEC. On the basis of the 
current STIRPAT model, future works should consider 
additional relevant driving factors to further explore the 
mechanism of CCBEC. 
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