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Abstract 
 

In recent years, independence on prior information and the efficient integration of multiple visual cues have become an 
important topic in salient region detection. A salient region detection framework that integrates intrinsic and extrinsic 
visual cues was proposed in this study to remove the limitations of prior information. First, salient prior map was 
generated using statistical texture representations and by classifying superpixels into three classes of background, salient 
regions, and unknown regions. Second, the final saliency map was computed by integrating multi-channel color features 
and color contrast saliency factors based on self-generating salient prior map. Finally, the experiment was conducted on 
popular benchmark datasets, namely, Microsoft Research Asia (MSRA) and Extended Complex Scene Saliency Dataset 
(ECCSD), using two standard criteria: precision-recall rate and F-measure rate. Results demonstrate that the proposed 
method is more competitive than methods based on prior information, such as dense and sparse reconstruction (DSR), 
absorbing Markov chain (MC), and robust background detection (RBD). The proposed method achieves an 8% reduction 
in computing complexity compared with DSR. Compared with the learning-based method without prior information, the 
performance of the proposed method resembles that of discriminative regional feature integration (DRFI) and its 
complexity is reduced by 70%. This study provides a novel method to improve the performance of salient region 
detection and to avoid prior information. 
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1. Introduction 
 
Digital image is becoming an increasingly important 
resource in gaining information and knowledge as computer 
technology develops and mobile terminal becomes popular. 
The quick and accurate extraction of the key areas of an 
image and the preferential assignment of computing 
resources can effectively improve the efficiency and 
accuracy of image processing using salient region detection. 
Thus, the technology of salient region detection is widely 
used in image segmentation [1], object detection [2], and 
image retrieval [3]. 
      Distinguishing foreground (salient region) from 
background is a key step in salient region detection, and 
finding the visual characteristics for distinguishing 
foreground from background is the key research content. 
Some intrinsic cues were proposed that are only extracted 
from the input image. However, Borji et al. argued that 
salient region and background may share some common 
visual attributes among images, and the intrinsic cues lack 
the capacity to distinguish these attributes [4]. Therefore, 
extrinsic cues, including manual annotations, depth map, or 
the similarities between images, were incorporated to 

facilitate salient region detection in images.   
       Intrinsic or extrinsic cues must be represented by 
quantifiable representations, such as structure, contrast, 
texture, color, size or shape. Color attribute is most widely 
used as a single representation among these representations. 
The study [5] found that structure and texture 
representations can distinguish salient region from 
background. Methods that integrate multiple visual cues 
were proposed because single visual cue and single 
representation have their own defects. Perazzi et al. 
proposed a Gaussian filtering framework that integrates two 
intrinsic cues, namely, color representation and spatial 
distribution, as uniqueness and compactness, respectively [6]. 
However, color contrast and compactness representations 
cannot easily distinguish similar colors between salient 
region and background. Methods based on prior information 
were proposed to improve salient region detection. 
Remarkable results have been achieved by prior background 
methods using boundary and connectivity priors derived 
from probable backgrounds in natural images [7]. The prior 
information are primarily motivated by psychophysical 
observations, that is, salient objects have distance from 
image boundary and most background regions always 
connect to one another along the boundary. However, prior 
information limits the application range of salient region 
detection. Thus, the integration of multiple representations 
without prior information is the research direction of salient 
region detection. 
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 This study proposes a multi-stage framework of salient 
region detection. Different visual cues are used in different 
stages to utilize the advantages of different features. In the 
gradual pattern of salient region detection, the salient prior 
map computed with classification algorithm is used instead 
of the priori model of artificial design. 
 
 
2. State-of-the-art 
 
Distinguishing and segmenting salient regions from 
background are key steps when detecting salient regions. 
Searching for visual characteristics, which have 
discriminative abilities of salient region detection, is key in 
distinguishing salient regions from background [4]–[5]. 
Color contrast and spatial distribution representations 
extracted from the input image itself as the intrinsic cues are 
applied in salient region detection. Although salient regions 
and background may share some common visual 
representations, intrinsic cues are not good at distinguishing 
these representations. Therefore, the study of extrinsic cues 
with user annotations or statistical information of similar 
images received increased attention.   
 Methods about global regional color contrast used as 
intrinsic cue were widely studied in existing approaches [8]
–[9]. Jiang et al. obtained effective result by modeling the 
salient characteristic in color space with an absorbing 
Markov chain [10]. In addition to color representation, other 
representations, such as texture [11] and structure [12], were 
also proposed for salient region detection. These methods 
use single visual feature simply and lack the integration of 
multiple visual features. Methods that integrate multiple 
features were proposed because single representation has 
limits in distinguishing salient regions. Features that include 

global color spatial distribution, local multi-scale contrast, 
and regional center surround histogram distance were 
integrated in the method [13]. Cheng et al. evaluated the 
global contrast differences and spatial coherence using the 
Gaussian mixture model (GMM) to improve the accuracy of 
salient region detection [14]. Regional features with color 
and shape were considered in the approach [15]. These 
methods only focus on the integration of intrinsic visual cues 
and ignore the correlation of visual characteristics between 
images. Although machine learning methods were widely 
applied in other areas of computer vision, such as image 
classification, research in salient region detection are few. 
Learning-based algorithms for salient region detection were 
also proposed because labeled datasets for saliency detection 
were proposed recently. A supervised learning method [16] 
was performed using regional descriptors to build a saliency 
map with multilevel image segmentation. However, this 
method lacks intrinsic and extrinsic visual cue integration.   
 Prior information was defined by analyzing the human 
visual characteristics for salient region detection [4]. The 
background measure method was proposed as prior 
information that considers image boundary as the 
background and defines boundary connectivity to estimate 
background regions [9]. Li et al. used a set of background 
templates as prior information to construct the dense and 
sparse representation errors of each image region; they also 
computed the saliency map by integrating reconstruction 
errors [17]. In [10], salient regions were detected by 
integrating different representations with prior information 
known as center prior. Prior-based methods achieved 
outstanding performance on popular benchmark datasets. 
However, prior information limits the application fields of 
salient region detection.  

 

      
 

Fig. 1. Detailed approach of the proposed method 
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 These studies mostly depend on prior information and 
integrate multiple features simply as a result of the lack of 
intrinsic and extrinsic cue fusions. This study considers the 
full advantage of intrinsic and extrinsic cues with multiple 
features, and implements the avoidance of prior information 
into a unified framework based on the perspective of 
integrating cues and features. This study uses the algorithm 
presented in [6] to segment an input image into regions; a 
regional saliency map is then computed in the superpixel 
level instead of pixel-wise level to reduce computational 
time. The approaches of J. Kim et al. [18] and C. 
Scharfenberger et al. [11] are closely related to our method.  
The method in [18], which integrates intrinsic and extrinsic 
cues, dosen’t use statistic textural characteristic. The method 
in [11], which uses statistic textural characteristic, neglects 
the learning-based cue. The present study extends existing 

methods and integrates intrinsic and extrinsic cues in multi-
stage framework. Textural characteristic is used as an 
extrinsic cue to compute the salient prior map to remove 
dependence on prior information. The final saliency map is 
calculated by integrating the multi-channel color 
characteristics and color contrast feature using the salient 
prior map as prior information. This approach is robust in 
applications without prior information. 
 The rest of this study is organized as follows. Section 3 
describes the statistic textual model used as an extrinsic cue 
for the salient prior map. A method is proposed, which 
integrates intrinsic cues to generate the final saliency map 
based on self-generating salient prior map. Section 4 
presents the experimental results and discusses the 
performance with several state-of-the-art saliency methods. 
Section 5 summarizes and provides conclusions. 

 
 

       
                                               (a)                                                         (b)                                                                    (c) 

Fig. 2. Superpixel segmentation and textural representation.(a) Raw image (b) Superpixel segmentation (c) Textural representation 
 

 
3. Methodology 
 
3.1 Generation of Salient Prior Map 
The generation of salient prior map (SPM) from an image is 
described in detail in this section. This approach processes 
an image in the region level with superpixel segmentation 
and uses statistic textural representation with random forest 
regressor to classify superpixels. Similar to [18], the SPM 
consists of background candidate, foreground candidate, and 
unknown regions. The accuracy of salient region 
classification in SPM is further improved by benefiting from 
the class of some ambiguous unknown regions. Fig. 1 
describes the detail approach of the proposed method. 
 
3.1.1 Superpixel Segmentation and Textual 
Representation 
The features extracted from superpixels are effective and 
efficient for salient region detection according to [6]. 
Superpixels preserve the local image structure, such as 
region contours between superpixels. Figs. 2a and 2b show 
that the input image  I is segmented to form superpixels. 
Simple linear iterative cluster (SLIC) [19] is used because of 
its high performance and low computational cost. 
      A texture representation model represents the textural 
characteristics of local superpixels, such as that in [11]. Let 
 I  be the  M × N image, and  I(x)  is the intensity of a pixel 
 x  in image  I . Given an adjacent area Ω  with pixel  x  in 
the center, the local textural representation 

 
hc(x)  for each 

color channel  c is defined as: 
 

  

hc(x) =
Ic (x)sort↑{Ic (x1, j )}sort↑{Ic (x2, j )}...sort↑{Ic (xn, j )}

    (1) 

 

where   
xi, j  is the  jth  pixel position in the  ith  pixel radial 

layer around  x , and  sort ↑ denotes sorting in the intensity 
by ascending order. Fig. 2c shows the process for single 
color channel. Similar to [11], Principal Component 
Analysis (PCA) is used to reduce the dimension of 

 h(x)  

with the  u  principal components: 
 

  wx ={Ψ i (h(x)) |1≤ i ≤ u}                            (2) 

 
where  Ψ i  is the  ith  principal component of  h(x) . In this 
study,  u  is selected to represent 95% of the variance of all 
textural representations. Then, the set of local texture 
representations with the image  I M×N  is obtained: 
 

  W ={w1,w2 ,w3,...,wx ,...,wM×N }                   (3) 
 
where  wi  is the textural representation of the  ith  pixel in 
image  I M×N . For the textural representations of the 

aforementioned superpixels, a set  W ε of J superpixels is 
defined as: 
 

  W
ε ={wε1,wε 2 ,wε 3,...,wε J }                          (4) 

 

where  wεv , 1 ≤ v ≤ J is the texture feature of superpixel  εv . 

 wεv  is computed by averaging all  U  local textural 

representations  wx  within a superpixel   εv .  
 

  
wεv =

1
U

∑
x

U

wx ,x ∈εv                                              (5) 
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3.1.2 Definition of Saliency with Texture Representation 
Salient regions with highly unique and distinctive textural 
characteristics are considered based on the consensus of 
saliency. A quantitative metric is used to distinguish texture 
patterns relative to one another. The model of statistical 
textual distinctiveness demonstrated good performance, 
wherein a region is salient when the textural pattern 
commonality is low. Then, the full utilization of the 
statistical textual distinctiveness is described to discern 
underlying saliency. 
 Let  wε i  and  

wε j denote a pair of texture elements, where 

 
wε j  is a noisy observation of another  wε i , and  wε i  and  

wε j  

differ only in an additive random component   
ηi, j : 

 

  
wε j = wε i +ηi, j                                   (6) 
 
   

ηi, j  is a random field with probability distribution 

  
P(ηi, j )  used to show the differences between  wε i  and  

wε j  

with the inherent texture variability.   
ηi, j  is used as the 

Gaussian random field with zero-mean and variance  δ
2  

corresponds to the variance of the Lp-norm 
(   
δ 2 = var(|| wε i − wε j ||p ) ) between  wε i  and  

wε j . The 

probability of  wε i  is then defined as a noisy observation of 

 
wε j  as: 
 

  
P(wε i | wε j ) = P(wε i,k | wε j ,k )

k
∏                  (7) 

 
where   

P(wε i,k | wε j ,k )  is the probability of element k in  wε i  
being a noisy observation of the corresponding element k in 

 
wε j . Let   

βi, j  replace   
P(wε i | wε j ) , a textural distinctiveness 

matrix  T n×n  is constructed based on the  n  superpixels. 

Each entry   
ti, j  in the matrix is associated with the statistical 

textural distinctiveness    
βi, j  between a pair of textural 

representations  wε i  and  
wε j  . 

 
3.1.3 Estimation of SPM  
The SPM of an image is estimated using the aforementioned 
textural distinctiveness matrix  T n×n  based on the following 
assumption: statistical textural distinctiveness and 
probability of occurrence between regions. The probability 
of occurrence is defined as the number of pixels in the 
corresponding region. A classification algorithm is used to 
estimate the SPM in contrast to the threshold-based method 
[11]. In this study, the random forest classification [20] is 
used to classify superpixels into foreground, background, 
and unknown regions because of its efficiency in large 
databases and its generalization ability. Vector  α i , which 

represents the salient feature for the region  Si , is defined as 
follows: 
 

  
α i = (| S1 | ⋅βi,1,| S2 | ⋅βi,2 ,...,| S j | ⋅βi, j ,...,| Sn | ⋅βi,n )      (8) 
 

where   
| S j |  is the number of pixels in  

S j . Images with 
ground truth labels from the Microsoft Research Asia 
(MSRA) dataset [15] are used. The random forest 
classification provided by Becker et al. [21] is used. The 
relatively reliable superpixels of salient and non-salient 
superpixels are considered as foreground or background, 
respectively, and the ambiguous superpixels are considered 
unknown. The classification of ambiguous regions can make 
the location of salient regions more reliable than binary 
saliency maps without unknown regions. The threshold 
values   

Tfore = 1 and   Tback = −1   are used to decide which 
class each superpixel belongs to through the response value 
extracted from the classifier. If a superpixel obtains a 
response value over  

Tfore , then the superpixel belongs to the 

foreground. However, if the value is lower than  Tback , then 
the superpixel belongs to the background; otherwise, it is 
classified unknown.  
 
3.2 Final Saliency Estimation from SPM 
The next stage uses color representations to estimate the 
final saliency map based on SPM.  
 
3.2.1 Color Representation for Saliency 
 
 Colors are important visual attributes in the visual 
system of a human. In this section, color representations are 
used to generate the final saliency map. Similar to [18], 
many different color spaces, including YUV (The Y denotes 
the luminance signal, and U, V denote the two chrominance 
signals), hue saturation value (HSV), and commission 
internationale de l'eclairage  L

*,a*,b*  (CIELab), are 
integrated. Searching for a linear combination of color 
coefficients in multiple color spaces may be a good choice 
because searching for a suitable color space that strongly 
correlates to human perception is difficult. The values in 
each channel of color spaces between [0, 1] are normalized 
to construct a high-dimensional matrix: 
 

   

T =

R1
γ 1 R1

γ 2 R1
γ 3 G1

γ 1 !

R2
γ 1 R2

γ 2 R2
γ 3 G2

γ 1 !

" " " " "
RN

γ 1 RN
γ 2 RN

γ 3 GN
γ 1 !

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

∈RN×l               (9) 

 
where  Ri  and  Gi  are mean pixel value of the  i

th  
superpixel for corresponding color channel in the image. By 
utilizing the salient region and background color samples in 
the SPM, estimating an optimal linear combination of color 
coefficients is formulated as a l2 regularized least squares 
problem that minimizes: 
 

   
min
θ

(Q − !Tθ )
2

2
+ λ θ

2

2
                         (10) 

 
where  θ ∈Rl  is the coefficient vector to be estimated, λ is a 
weighting parameter to control the magnitude of θ , and   !T  
is a  M × l matrix. Each row of   !T  corresponds to color 
representations in the foreground or background candidate 
regions: 
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!T =

RF1

γ 1 RF1

γ 2 RF1

γ 3 GF1

γ 1 "

# # # # #
RFx

γ 1 RFx

γ 2 RFx

γ 3 GFx

γ 1 "

RB1

γ 1 RB1

γ 2 RB1

γ 3 GB1

γ 1 "

# # # # #
RBy

γ 1 RBy

γ 2 RBy

γ 3 GBy

γ 1 "

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

                 (11) 

 
where  Fi  is the  i

th  foreground candidate superpixel and  
Bj  

is the  j
th  background superpixel that are classified at SPM 

generation step, respectively. M is the number of superpixels 
in the foreground/background candidate regions and N is the 
number of total superpixels in the image ( M << N ). Let 
 x and  y  denote the number of superpixels in foreground 
and background, respectively, such that  M = x + y . Q is an 
M dimensional vector with a value equal to 1 and 0 when a 
superpixel belongs to the foreground and background 
candidate, respectively: 
 

   

Q = 1 1 ! 1
x 1's

" #$$ %$$ 0 0 ! 0
y 0's

" #$$ %$$

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

T

∈RM×1        (12) 

  
 The l2 regularized least square problem can be readily 
minimized with respect to θ  as  θ

*  because the number of 
superpixels is greater than the dimensions of the coefficient 
vector. In all experiments, λ = 0.05 is used to attain the best 
result. 
 

   θ
* = ( !T T !T + λ I )−1 !T TQ                           (13) 

 
3.2.2 Computation of Final Saliency Map 
The saliency map that can be constructed after  θ

* is obtained:  
 

   
φ(wi ) = Tijθ j

*, i = 1,2,!, N
j=1

l

∑                    (14) 

  
 With the l2 regularizer, the constructed saliency map is 
more reliable for the foreground and background superpixels 
in the SPM. However, the l2 regularized least square 
algorithm is sensitive to noise. Thus, the result must be 
adjusted with another cue. Motivated by the method [4], the 
salient contrast factor  Ui  and background contrast factor  Si  
are defined as: 
 

  
Ui = ci − cj

2

j=1

N

∑                                 (15) 

 
and 
 

  
Si = ci − ck

2

k=1

M

∑                                     (16) 

 
where N and M are the numbers of salient and background 
superpixels in the SPM, respectively. Salient contrast factor 

 Ui  is generally defined as the contrast of the  ith  superpixel 

given its color in CIELab  ci  compared with all other salient 

superpixels in the SPM. Background contrast factor  Si  is 

defined in a similar way. The small value of  Ui  implies that 
the  ith superpixel more likely belongs to salient region. 

Similarly, the small value of  Si  implies that the  ith  

superpixel more likely belongs to the background.  Ui  and 

 Si  are normalized to adjust Eq. (14) by: 
 

   

φ(wi ) =

α Tijθ j
*

j=1

l

∑

max(1−Ui ,Si ) Tijθ j
*

j=1

l

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

, 1−
Ui

Si

≤δ

, 1−
Ui

Si

> δ

, i = 1,2,…, N

 (17) 
 
where δ  is a small value that represents the difference 
between  Ui  and  Si . When  Ui  is similar to  Si , then salient 
contrast factor and background contrast factor cannot help 
distinguish the salient region from background. Thus, 
 α = 0.5  is set as a balance factor. 
 
4 Result Analysis and Discussion 

 
The performances of the proposed method were evaluated 
and compared against previous algorithms, such as the 
methods proposed by Jiang et al., which is the discriminative 
regional feature integration (DRFI) [16], Li et al., which is 
the dense and sparse reconstruction (DSR) [17], Jiang et al., 
which is the absorbing Markov chain (MC) [10], J. Kim et 
al., which is the high-dimensional color transform (HDCT) 
[18], and Zhu et al., which is the robust background 
detection (RBD) [9], on popular benchmark datasets, such as 
MSRA [15] and Extended Complex Scene Saliency Dataset 
(ECCSD) [22]. In the present study, precision–recall rate 
and F-measure rate, which were described by criteria [7], 
were used to evaluate our salient region detection algorithm. 
 The threshold was adjusted from 0 to 255 to generate 
saliency map. Moreover, the precision–recall curve was 
plotted with the x-axis and the y-axis as the recall and 
precision rates, respectively. The precision–recall curve of 
some state-of-the-art algorithms, including our algorithm, is 
shown in Fig. 3. The results show that our method is more 
competitive than previous methods. 
      F-measure rate coordinates Precision and Recall rates for 
comprehensive evaluation are defined below: 
 

  
Fβ =

(1+ β 2 )Precision× Recall
β 2Precision+ Recall

                  (18) 

  
 Similar to [22], the reconciled parameter β  was set 
as β

2  = 0.3. The F-measure curve was plotted with the x-
axis as the threshold and the y-axis as the F-measure rate. 
Fig. 4 shows that the F-measure curves of the state-of-the-art 
algorithms show that our approach has a competitive global 
performance compared with other methods. 
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                                               (a)                                                                                                  (b) 
Fig. 3. Comparison of the precision–recall curve with state-of-the-art algorithms on representative benchmark datasets: (a)MSRA dataset (b)ECSSD 

dataset 
 
 

      
                                             (a)                                                                                                     (b)  

Fig. 4. Comparison of the F-measure curve with five state-of-the-art algorithms on representative benchmark datasets: (a)MSRA dataset (b)ECSSD 
dataset 

 
 The average computational times for the compared 
methods are shown in Table 1 to further demonstrate the 
performance of our method. The running environment is a 
laptop with an Intel Dual Core i5-2500K 3.30 GHz CPU, 
8.00GB RAM and the software environment is 
MATLAB2012b. Results show that our approach achieved 
competitive performance compared with other methods. The 
superpixel generation step (about 0.9 s) and feature vector 
generation step (about 4.1 s) for SPM were the most time-
consuming steps based on the computational complexity of 
our proposed method. DRFI[16] and HDCT[18] are state-of-

the-art methods without prior information. The performance 
of our method is inferior to DRFI but better than HDCT. 
However, computation complexity was reduced by 70% 
compared with DRFI. This algorithm compromises balances 
in accuracy and complexity. The performance of our method 
is comparable to methods based on prior information, such 
as DSR[17], MC[10] and RBD[9]. An 8% reduction in 
computing complexity for DSR is observed in our method. 
Although prior information produces excellent results in 
benchmark datasets, they have limitations in real 
applications. 

 
Table 1. Comparison of average computational time (seconds per image) 

Method Our method DRFI[16] DSR[17] MC[10] HDCT[18] RBD[9] 
Time(s) 5.6 19.3 6.1 0.1 3.3 0.3 

     
                              
5. Conclusions 
 
A novel multi-stage method was presented in this study to 
address the problem of prior information dependency and 
lack of fusing intrinsic and extrinsic cues in salient region 
detection. This method calculated the SPM and the final 
saliency map and corrected noise error by integrating color 
features and statistical texture features based on learning and 
by using color contrast features, respectively. Finally, 
experiments were performed on two popular benchmark 
datasets. The following conclusions are drawn: 
      (1) Statistical texture features are rotational-invariant and 
effective for the discrimination of salient regions. 

Complexity is decreased effectively with superpixel 
segmentation because pixel-level statistical texture features 
are relatively complex. 
      (2) When classification is used instead of the fixed 
threshold, the accuracy of SPM is effectively improved. 
Reliable reference is provided for subsequent calculation of 
saliency map.  
      (3) The multi-stage integration of intrinsic and extrinsic 
cues effectively takes full advantage of different cues. The 
experiments prove that this method is very effective in 
improving the precision of salient region detection. 
 The algorithm presented in this study eliminates the 
dependence on prior information in salient region detection, 
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improves the adaptability of the algorithm in real application, 
and provides good preprocessing performance for other 
computer vision applications. Future work should examine 
parallel algorithms to improve the efficiency of salient 
region detection. Consequently, heuristic optimization 

algorithm should be considered to solve the noise-sensitive 
problem of least squares optimization better. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  
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