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Abstract 
 

This paper studies the Greek railway network (GRAN) by using complex network analysis (CNA) and empirical 
approach. The study aims to detect the socioeconomic information immanent to the GRAN’s topology and to provide 
insights about how this network serves regional development. The analysis shows that the GRAN’s topology complies 
with the empirical findings on railway networks, which are described by lattice-like characteristics, due to intense spatial 
constraints, but it outperforms the topology of a lattice and resembles more to a bus-like configuration. The major 
conclusion, in terms of regional policy, concerns that the GRAN enjoys an effective architecture of bus-topology, but its 
socioeconomic functionality is not as effective as its topology. Overall, the analysis provides evidence for the utility of 
applying the network paradigm to transportation research, regional, and spatial studies. 

 
  Keywords: complex network analysis, spatial networks, bus topology, pattern recognition.  
 ___________________________________________________________________________________________ 

 
1. Introduction 
 
Railway networks are among the oldest land infrastructure 
networks serving transportation needs with the use of 
technology (Kurant Thiran, 2006; Barthelemy, 2011; 
Polyzos et al., 2014). The term “land transportation 
networks” describes those networks developed on 
hinterland, which serve transportation without using sea or 
air modes. Taking into consideration that transportation can 
be considered as an aspect of human communication 
submitted to inevitable spatial constraints (Rodrigue et al., 
2013, Tsiotas and Polyzos, 2015a), it is obvious that the 
structure and the shape of such networks diachronically 
reflects the historic needs of human communication and 
depends on the corresponding human capabilities to 
overcome the spatial constraints (Blumenfeld-Lieberthal, 
2008; Rodrigue et al., 2013; Tsiotas and Polyzos, 2015a,b). 
For example, the structure, the geometry and generally the 
shape of road networks is obviously different today than this 
existed in the past. Structural differences are due to 
evolution in vehicle, road, and construction work 
technologies, whereas shape differences are based on 
changes in the socioeconomic importance of cities being 
connected by road networks (Rodrigue et al., 2013; Polyzos 
et al., 2014). 
 The study of the specific historic, socioeconomic, and 
geographic (spatial) conditions surrounding a transportation 
network contributes to attain a more in-depth knowledge 
about its structure and functionality and facilitates the 
process of its modeling. On the other hand, provided that the 
construction and generally the development of transportation 

infrastructures is time and money expensive, it can be 
considered that the form and the topology of transportation 
networks restrict their further economic and regional 
development (Blumenfeld-Lieberthal, 2008; Rodrigue et al., 
2013; Tsiotas and Polyzos, 2015a,b), implying that the 
constructed transportation infrastructures lack of the 
flexibility to rearrange their topology according to their 
environmental forces, such as in the case of immaterial (i.e. 
social) networks (Sgroi, 2008), and thus they remain 
inflexible to the rapid socioeconomic changes (Polyzos et 
al., 2014; Tsiotas and Polyzos, 2015b).  
 The elasticity of a transportation network to embody 
environmental changes depends on its specific 
characteristics. For example, the structure of land networks 
is more static than this of maritime or air transport networks, 
where transportation occurs not in a constructed medium (in 
contrast to rail or road networks) and thus the spatial 
constraints are lessen (Rodrigue et al., 2013).  
 In Greece, transportation through land networks 
constitutes a major component of the national and regional 
economy and a considerable developmental drive (Polyzos, 
2011), due to geomorphology and geopolitical reasons. From 
one aspect, Greece intermediates two continents (Europe, 
Asia) and three seas (Black Sea, Aegean, and 
Mediterranean), where significant trade and similar 
potentials are developed. On the contrary, the diverse Greek 
geomorphology, which is both mountainous and insular, 
restricts the development of land transportation networks 
and simultaneously favors the development of alternative 
(competitive) transportation modes (Tsiotas and Polyzos, 
2015a).  
 Within this framework, this paper studies the 
interregional Greek Railway Network (GRAN) using 
complex network analysis (CNA) (Albert and Barabasi, 
2002; Barthelemy, 2011) and empirical techniques (Tsiotas 
and Polyzos, 2015a,b), aiming to mine the socioeconomic 
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information that is enclosed in the topology of this network 
and to evaluate its contribution regional development. 
 The remainder of this article is organized as follows: 
section 2 presents the modeling and the methodological 
framework used in this study, section 3 presents the results 
of the analysis and discusses them under the regional science 
perspective, and, finally, in section 4 conclusions are given. 

 
 

2.  Methodology 
 
2.1. Graph modeling and data 
The Greek Railway Network (GRAN) is constructed in the 
L-space representation (Barthelemy, 2011; Tsiotas and 
Polyzos, 2015a) as an undirected graph G(V,E), where the 
nodes V represent railway intersections, whereas the edges Ε 

represent railway routes running through a single channel 
without direction changes. Node positioning in the 
topological map corresponds to the exact coordinates of 
physical rail intersections, whereas edge length is drawn 
proportional to their physical distances. The GIS data used 
for the delineation of GRAN were drafted from the 
geodata.gov.gr (2010) database, which is s web platform 
providing open geospatial data and services for Greece and 
serving as a national open data catalogue. The GRAN was 
modeled having as spatial weights the kilometric distances 
between nodes, consisting of  
  V =n=107 nodes and equal in number  E =n=107 
edges. The physical and its graph representation of GRAN 
are shown in figure 1.  

  
Fig. 1. The physical (left) and graph (right) representation of the Greek Rail Network (GRAN), consisting of n=107 nodes and m=107 edges. 
Representations are restricted to the non-insular regions of Greece. Prefectures equipped with railway infrastructure are shown in color. 
 
 The GRAN constitutes a disconnected graph including, 
except of the two major interregional rail network 
components of the land Greece (the north and south), some 
also local urban components, such as are the electric, the 
suburban and the metro railways of the Athens region. The 
GRAN is modeled as an undirected graph without loss of 
information, because railway routes are by rule constructed 
bidirectional. Due to data availability, the GRAN has only 
spatial weights proportional to kilometric distances of each 
route.  

 
2.2. Network measures and descriptives 
A set of network measures and descriptives drafted from 
Graph Theory (Diestel, 2005) and Network Science 
(Koschutzki et al., 2005; Blondel et al., 2008; Fortunato, 
2010; Barthelemy, 2011; Tsiotas and Polyzos, 2013) are 
used for the analysis of GRAN. The description of the 
available measures is shown in brief in table 1. 

 
Table 1. Network measures used in the analysis 
Measure Description Math Formula 
Notation 

G(V, E) The graph model of the GRAN, consisting of the 
node set V=V(G) and the edge set E=E(G). 

 

n The number of network nodes (vertices) 

  
n = i

i∈V (G )
∑  

m The number of network edges (links) eij∈E(G). 

  

m = δ ij
i, j∈V (G )
∑ ,  where δ ij =

1,  if eij ∈E(G)

0,  otherwise

⎧
⎨
⎪

⎩⎪
 

wij The weight of the edge eij. For the GRAN, 
weights represent spatial (kilometric) distances 
wij=dij. 

 

Network measures 
Graph density (ρ) Fraction of the existing connections of the Graph 

to the number of the possible connections. 
Represents the probability to meet in the GRAN   

ρ =
E(G)

E(Gcomplete )
= m n

2
⎛

⎝⎜
⎞

⎠⎟
= 2m

n ⋅(n−1)
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Measure Description Math Formula 
a connected pair of nodes. 

Node Degree 
(k) 

Number of the edges adjacent to a given node, 
expressing the node’s communication potential.   

ki = k(i) = δ ij
j∈V (G )
∑

 Node (spatial) 
strength 

(s) 

The sum of edge distances being adjacent to a 
given node.   

si = s(i) = δ ij ⋅dij
j∈V (G )
∑

 Average Network’s 
Degree  k  

Mean value of the node degrees k(i), with i∈
V(G). 

  
k = 1

n
⋅ k(i)

i=1

n

∑
 Closeness 

Centrality ( Ci
C ) 

Total binary distance d(i,j) computed on the 
shortest paths originating from a given node i∈
V(G) and having destination all the other nodes j
∈V(G) in the network. This measure expresses 
the node’s reachability in terms of steps of 
separation. 

  
Ci

C

= 1
n−1

⋅ dij
j=1,i≠ j

n

∑ = di

 

Betweenness 
Centrality ( Ck

B ) 
Fraction of all shortest paths σ(k) including a 
given node k, to the number σ of all the shortest 
paths in the network.  

  Ck

b

=σ (k) σ

 
Clustering 

Coefficient ( cv ) 
Probability of meeting linked neighbors around 
the node, which is equivalent to the number of 
its connected neighbors E(i), divided by the 
number of the total triplets shaped by this node.  

  

cv =
triangles(i)
triplets(i)

= E(i)
ki ⋅ k j −1( )  

Modularity (Q) Objective function that expresses the potential of 
a network to be divided into communities. In its 
mathematical formula, gi is the community of 
node i∈V(G), [Aij - Pij] is the difference of the 
actual minus the expected number of edges 
falling between a particular pair of vertices i,j∈
V(G), and δ(gi,gj) is an indicator function 
returning 1 when gi=gj. 

  
Q =

[Aij − Pij ]⋅δ (gi ,g j )
i, j
∑

2m  

Average Path 
Length  l  

Average length d(i,j) of the total of network 
shortest paths. 

  
l =

δ ij ⋅dij
i, j∈V (G )
∑
n ⋅(n−1)

  
 
2.3. Pattern recognition 
This part of analysis aims at detecting patterns in the 
topology of the GRAN, which provide further insights about 
the network structure and dynamics. Such patterns may 
emerge from a set of approaches (Barabasi and Albert 1999; 
Albert and Barabasi, 1999; Boccaletti et al., 2006; 
Barthelemy, 2011), among which those that are applied in 
this analysis are:  
 

• The examination of the typology of the degree 
distribution p(k): this approach provides insights mainly 
about the existence of the scale-free attribute, which occurs 
when the degree distribution fits to a power-law curve 
f(x)=bx-a (Stumpf and Porter, 2012) with exponent within the 
interval 2< a <3 (Barabasi and Albert 1999; Albert and 
Barabasi, 1999; Boccaletti et al., 2006), or about the 
existence of spatial constraints, in cases when the p(k) is 
peaked (Barthelemy, 2011). 

• The examination of sparsity (spy) plots: in this 
approach (Bishop, 2006) the GRAN’s adjacency matrix is 
visualized using a spy plot representing with dots its non-
zero elements. Next, null-models are constructed that are 
submitted to the p(k)-equivalent and n-equivalent constraints 
and their adjacency matrices are also visualized into spy-
plots. The term p(k)-equivalent is used here to describe the 
available null-models (lattice, random) that have the same 
degree distribution with the GRAN, whereas the term n-
equivalent to describe the available null-models (scale-free, 
small-world) that have the same number of nodes with the 

empirical network being under examination. Comparisons 
between spy plots may provide insights about the 
topological pattern of GRAN.  

• The calculation of the omega (ω) index: this 
approach was proposed by Telesford et al. (2011) for the 
approximate small-world detection. According to network 
theory, the small-world property is defined on a family of 
graphs, whether the average path length scales 
logarithmically  l =O(logn) as n→∞ (Xu and Sui, 2007; 
Barthelemy, 2011; Porter, 2012). Due to the unavailability of 
studying a family of graphs in empirical cases, the small-
world attribute is detected approximately using the ω index, 
which compares the clustering of the network being under 
examination with that of a p(k)-equivalent lattice network 

 
c

latt( )  and the network’s path length with that of an p(k)-

equivalent random network 
 

l
rand( ) , according to the 

following relation: 
 

 
ω =

l
rand

l
−

c
c

latt

 (3) 

 
 The null-models are computed using a random algorithm 
(Maslov and Sneppen, 2002) and the ‘‘latticization’’ 
algorithm (Rubinov and Sporns, 2010), which both preserve 
the degree distribution of the original network. Values of ω 
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are restricted to the interval [-1,1], where those close to zero 
illustrate the small-world attribute, positive values indicate 
random characteristics and negative indicate more regular or 
lattice-like  characteristics (Tsiotas and Polyzos, 2015b). 
 

• Visualization of network measures’ spatial 
distributions: in this approach, nodes in the network’s 
geographical map are colored proportionally to the values 
they have for a certain measure or attribute (Heymann, 
2014). This visualization contributes detecting the spatial 
patterns of the network measures and the differences in their 
spatial distributions (Tsiotas, 2017).  

• Correlations between connectivity and traffic: 
correlations between degree (k) with betweenness centrality 
(Cb) and strength (s), namely (k, Cb) and (k, s) respectively, 
are broadly used to detect homogeneity between 
connectivity and network traffic. Since GRAN has only 
spatial weights, the (k, s) correlation does not suffice to 
provide traffic information, whereas the (k, Cb) correlation 
does it indirectly. Further, provided that the node-degree (k) 

is a discrete measure, the cases (k, Cb) and (k, s) are being 
classified into p groups (k=i, {Cb: k=i}) and (k=i, {s: k=i}), 
with i=1,2,…,kmax=p. Consequently, power-law fittings are 
applied to average Cb and s values per degree-case (k=i), 
namely to pairs (k=i, 

  
Cb : k = i{ } ) and (k=i, 

  
s : k = i{ } ). 

When b(k, Cb)>1 it implies that hubs are those undertaking the 
biggest proportion of the network traffic, whereas b(k, s)>1 it 
illustrates that hubs undertake the distant communication 
(Barthelemy, 2011).    

 
2.4. Empirical Analysis 
Empirical analysis is performed to a set of structural 
variables of the railway network, being compared with other 
available spatial, economic, demographic, and tourism 
variables. All variables were edited to refer to regional scale 
(NUTS II), since the nodes in their physical scale do not 
have any practical physical or regional economic utility. The 
variables participating in the empirical analysis are shown in 
table 2.  

 
 

Table 2. Variables* participating in empirical analysis of GRAN 
No Symbol Description Data Reference 
Network infrastructure variables 
1.  GRNLENGTH Road Network Length: The total road network length included in 

each prefecture.  
OKXE (2005); own 
elaboration 

2.  GRNDENSITY Road Network Density: The road network density of each 
prefecture, defined as the fraction of the total road length included 
in a prefecture to the prefecture’s area. 

OKXE (2005); own 
elaboration 

3.  GRANLENGTH Railway Network Length: The total railway network length 
included in each prefecture.  

OKXE (2005); own 
elaboration 

 GRANDENSITY Railway Network Density: The railway network density of each 
prefecture, defined as the fraction of the total railway length 
included in a prefecture to the prefecture’s area. 

OKXE (2005); own 
elaboration 

1.  AREA Prefecture Area: The area of each prefecture (in km2). OKXE (2005); own 
elaboration 

2.  PORTS Number of Ports: Number of sea ports included in each prefecture. Tsiotas and Polyzos 
(2014) 

Spatio-economic variables 
3.  IPP Indirect Population Potential: complex measure, describing the 

volume of economic activities that a prefecture can access. 
Polyzos (2011) 

4.  DPP Direct Population Potential: complex measure, describing the 
volume of economic activities that are developed within a 
prefecture. 

Polyzos (2011) 

Economic variables 
5.  GDP Gross Domestic Product: the percentage contribution of each 

prefecture to the country’s GDP. 
Polyzos (2011) 

6.  ASEC A-Sector Specialization: the participation of a prefecture’s primary 
product to the national GDP, for the year 2013. 

Tsiotas and Polyzos 
(2014) 

7.  CSEC C-Sector Specialization: the participation of a prefecture’s tertiary 
product to the national GDP, for the year 2013. 

Tsiotas and Polyzos 
(2014) 

8.  AGRINV Agro-industrial Investments: per capita investments in agro-
industry occurred in a prefecture for the period 2004-2008. 

Polyzos et al. (2015) 

9.  RPD Regional Productivity Dynamism: complex index, calculated on the 
levels of employment and productivity structures for a given 
prefecture. 

Polyzos et al. (2015) 

Socio-demographic variables 
10.  POP Regional Population: the population of each prefecture according 

to the 2011 national census. 
Tsiotas and Polyzos 
(2014) 

11.  WELF Welfare Index: it describes the level of welfare of each prefecture. Polyzos (2011) 
12.  EDU Educational Index: it describes the educational level of citizens in 

each prefecture. 
Polyzos (2011) 

13.  URB Urbanization Index: it represents the population of each 
prefecture’s capital city. 

Polyzos et al. (2015) 

Tourism variables 
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No Symbol Description Data Reference 
14.  TGDP Tourism Specialization: the participation of a prefecture’s tourism 

product to the national GDP, for the year 2013. 
Tsiotas and Polyzos 
(2015a) 

15.  R TALC Growth Coefficient (ST/T): Tourism Area Life Circle 
(TALC) Growth Coefficient, expressing the level of saturation of a 
prefecture in terms of per capita overnight-stayings recorded for 
this prefecture. 

Polyzos et al. (2013) 

16.  RT TALC Growth Coefficient (ST): Tourism Area Life Circle (TALC) 
Growth Coefficient, expressing the level of saturation of a 
prefecture in terms of overnight-stayings recorded for this 
prefecture.  

Polyzos et al. (2013) 

17.  RST TALC Growth Coefficient (T): Tourism Area Life Circle (TALC) 
Growth Coefficient, expressing the level of saturation of a 
prefecture in terms of number of tourists visiting this prefecture. 

Polyzos et al. (2013) 

*. The elements included in each variable are scores of prefectures referring to a certain attribute/ characteristic 
 

 In the part of empirical analysis, an independent-samples 
t-test is applied to the set of the available variables. This test 
compares the difference of the means µα and µβ between two 
discrete groups {Xα, Xβ} that originate from the same 
variable X. The null hypothesis states that these means are 
statistically equal (Ho: µα = µβ), whereas the alternative 
hypothesis expresses that they are different (H1: µα ≠ µβ). 
The algorithm of the test applies a sub-procedure with the 
Levene’s test to examine whether the variances between 
these two groups are equal and provides separate results per 
case (separate/unpooled and pooled variances), which are 
valid depending on their significance (Hays, 1981; Norusis, 
2004).  
 In this analysis, the groups are formulated according to 
the binary variable GRANINDEX, which is a dummy variable 
assigning the value one (1) to the prefectures that include 
railway infrastructures and zero (0) otherwise. Provided that 
the railway network does not cover the total area of the 
Greek territory (serving almost the half -26/51- regions), the 
purpose of applying this test is to detect whether the 
prefectures with railway network show different 
socioeconomic performance in regard to the variables being 
under examination. Specifically, the cases rejecting the null 

hypothesis (concluding that µα ≠ µβ) interprets that the 
prefectures having railway transportation infrastructures 
either show better or worse performance (depending on the 
sign of the difference µ=µα–µβ) than those without railway 
connection, in regard to concept of variable X.  

  
 

3. Results and Discussion 
 
3.1. Calculation of network measures 
The network measures calculated for the GRAN are shown 
in table 3, where it is observed that GRAN is composed by 8 
connective components, without including any isolated 
nodes (kGRAN,min≠0) and self-connections 

  
n eii ∈E( ) = 0( ) . 

The maximum degree of this railway network is kGRAN,max=3, 
whereas its average degree is 

  
k

GRAN
=2. This result 

complies with the corresponding value  k ≈2.1 of the Swiss 
railway network that was studied by Kurant and Thiran 
(2006).  

 
Table 3. Network measures of the GRAN 

Measure Symbol Unit Value 
Nodes n #(a) 107 
Edges m # 107 

Self-connected nodes  n eii ∈E( )  # - 
Isolated nodes  nk=0 # - 

Connected components α # 8 
Maximum degree kmax # 3 
Minimum degree kmin # 1 

Average node degree (binary)  k  # 2 

-//- (weighted)  kw  km 45.783 

Average nearest neighbor degree (binary) 
  

kN (v )  # 1.338 

-//- (weighted) 
  

kN (v ),w  km 30.618 

Average edge length 
 

d eij( )  km 24.293 

Total edge length 
 

d eij( )
ij
∑  km 2’259.2 

Average path length (binary)  l  # 9.501 

-//- (weighted)  l  km 132.42 
Network diameter (binary) dbin(G) # 30 
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Measure Symbol Unit Value 
-//- (weighted) dw(G) km 640.42 

Graph density (planar) ρ1 net(b) 0.340 
-//- (non-planar) ρ2 net 0.019 

Clustering coefficient C net 0.047 
Average clustering coefficient  C  net 0.074 

Modularity Q net 0.843 
a. number of cases 

b. dimensionless number 
 

 The average weighted degree of GRAN is 
  

kw GRAN
=45.783km and it expresses the total length of railway 
connections attached on average to a node of this network. 
The average neighbor degree, which is defined as the 
average of the average degrees (

 
k j ) that are computed 

along the neighbor-sets Ν(νi) for every node νi ∈V(G), is  

   
kN (vi ) GRAN

=1.338. This expresses that, on average, a 

node is connected with neighbors of average degree equal to 
1.338 connections.  
 According to an observation made by Tsiotas and 
Polyzos (2015) during the study of the Greek Aviation 
Network (GAN), which concerns the relation between the 
measures of average neighbor degree and average degree, 
the inequality 

  
kN (v ) GRAN

<
 

k
GRAN

 expresses that it is more 

possible for a randomly chosen network node to be of higher 
degree than its neighbors. For the GRAN’s topology, this 
inequality implies that the majority of nodes are connected 
with the maximum (or close to the maximum) degree and 
thus it is more probable to meet a hub in this network, where 
the existence of a spoke connection among its neighbors 
contributes to the decrease of the average nearest neighbor 
degree. 
 Additionally, the average weighted nearest neighbor 
degree of GRAN is 

  
kN (v ),w GRAN

=30.618km and expresses 

the total kilometric (spatial) distance of the edges adjacent to 
a node (total length of neighbor connections). The previous 
inequality between average degree and average nearest 
neighbor degree is also valid and in the kilometric-weighted 
case (

  
kN (v ),w GRAN

<
 

kw GRAN
), illustrating that the topology 

of GRAN resembles to this of a bus. In such a topology, the 
nodes that are arranged along the central bus-axis are usually 
hubs and distant to each other, whereas the hubs are 
connected in periphery with spokes that are closer than the 
inter-hub distances. 
 The average edge length 

 
d eij( )

GRAN
 of GRAN 

expresses that the average railway route until to meet a 
crossway is 24.293km, whereas the total length of the 
network is 

  
d eij ,GRAN( )

ij
∑ =2’259.2km. The average path 

length of GRAN expresses that the path between any pair of 

nodes is on average 
 

l
GRAN

=9.501 edges and distant 
 
d l( )

=132.42km. In terms of regional science, the measure 

 
l

GRAN  
is related to the general transportation cost (Tsiotas 

and Polyzos, 2014, 2015a) within the GRAN and it is of 
order O( n )= 107 ≈10.344 that corresponds to a two-
dimensional lattice network of the same number of nodes 
(see Barthelemy, 2011). This result obviously reflects the 
constraints of planarity, which are immanent in the GRAN 
due to its lattice-like structure.  
 Next, the longest binary path in the GRAN is 30 steps 
(edges), whereas the longest kilometric is 640.42km. 
Whether considering the GRAN as a planar graph, its 
density is ρ1=0.340, expressing that this railway network 
includes the 34% of the possible connections that can be 
developed in the plane for the given number of nodes nGRAN. 
In contrast, whether considering the GRAN as a non-planar 
graph, its density is ρ2=0.019, expressing that this network 
includes the 1.9% of the possible connections that can be 
developed in the space for the nGRAN nodes.  
 The clustering coefficient of GRAN equals to 
CGRAN=0.047 and average node clustering coefficient is 

 
C

GRAN
=0.074, which is significantly greater than this of an 

ER-random graph 
 

C
ER

~ 1/n=1/107=9.3·10-3. Finally, the 

GRAN’s modularity is QGRAN=0.843, expressing that this 
network has a great potential to be divided into 
communities.   
 
3.2. Pattern recognition  
The initial approach for the GRAN’s pattern recognition is 
the examination of the degree distribution typology, 
according to the scatter plots (k, n(k)) shown in metric and 
logarithmic scale in figure 2. Due to lack of (k, n(k)) cases, 
the procedure of fitting a curve to these data is not a safe 
approach for pattern recognition of the railway network 
(Stumpf and Porter, 2012; Tsiotas and Polyzos, 2015a). 
However, the obvious non-collinear arrangement of the p(k) 
cases shown in the logarithmic scale (figure 2) illustrates 
that the typology GRAN does not correspond to a power-law 
pattern and thus it is far from to be described by the scale-
free or small-world property. Further, the GRAN’s degree 
distribution p(k) in the metric scale shows a peak at the value 
k=2, which complies with the general empirical observation 
ruling the railway and the broader spatial networks 
submitted to intense spatial constraints (Barthelemy, 2011). 
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Fig. 2. Scatter plots (k, n(k)) shown in metric (left) and logarithmic (right) scale, illustrating the typology of the GRAN’s degree distribution p(k). 
 
 At next, the spy plots (Bishop, 2006) are constructed 
from the adjacency matrices (a) of the GRAN, and of four 
node-equivalent (n=107=constant) networks (null-models), 
which have the (b) scale-free, (c) lattice, (d) small-world, 
and (e) random network property, respectively (figure 3). 
Among these, the null-models (c) and (e) have in addition 
the same degree distribution p(k) with GRAN. The 
comparison of the GRAN’s spy plot with the (b)-(e) null-
models illustrates that the sparsity pattern of the network 

being under examination resembles more with these of (c) 
lattice network and (e) random graph. Provided that the 
GRAN represents a railway network, the most proper 
typology between these two is this of the lattice network. 
This deduction is expected to be verified at next, with the 
calculation of the omega (ω) index, which is proposed by 
Telesford et al. (2011) and examines approximately whether 
the network is ruled by the small-world property or it is 
described by random-like or lattice-like characteristics

.  
 

 

 
Fig. 3. Sparsity (spy) plots constructed from the adjacency matrices (a) of GRAN and of four node-equivalent (n=107=constant) networks, which 
have the (b) scale-free, (c) lattice, (d) small-world, and (e) random network property, respectively. Among these null-models, the cases (c) and (e) 
have in addition the same degree distribution p(k) with GRAN. 

 
 
 
The results of the approximate small-world detection (omega 
index calculation) for the GRAN are shown in table 4. The 
index has a negative value ω=-0.121, indicating the 
existence of lattice-like characteristics, which is however 
closer to the center than to the borders of the index’s image 
Iω=[-1,1], namely 

 
0−ω = 0.121< 1−ω = 0.879 < −1−ω =1.121 . This 

observation interprets that the GRAN is obviously more 
probable to be of lattice-like than of random-like 
characteristics, but such characteristics are not intense 
enough to define this empirical network as a pure lattice. 
Additionally, this interpretation complies with the previous 
findings stating that the topology of GRAN resembles to the 
topology of a bus, which is structurally an elegant topology, 

obviously not a random, and probably closer to this of a 
small-world than to a lattice network (

 
0−ω = 0.121< 1−ω = 0.879 ).  

 
c

latt
 

Table 4.Results of the approximate small-world detection 
(omega index calculations) for the GRAN  

Measure  c    l   
l

rand

 
ω* 

 0.07
4 

0.07
4 

9.50
1 8.356 

-
0.120

5 
Indicatio

n lattice-like characteristics 
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*. according to relation (3) 
 

 Afterwards, the spatial distributions of the fundamental 
topological and centrality network measures of the GRΑN 
(degree, betweenness, closeness, clustering, modularity, and 
strength) are visualized to the maps of figure 4 and being 
examined. First, the spatial distribution of degree (k) (figure 
4a) seems to verify the previously detected bus topology, 
since the network hubs (shown in bigger size) in the GRAN 
are arranged along a basic axis (i.e. the bus), whereas the 
other nodes (shown in smaller size) are arranged vertically to 
the bus, in branches. Next, the central nodes in respect to 
betweenness centrality (Cb) (figure 4b) are more 
concentrated than the degree hubs. In particular, the Cb-hubs 
are arranged along a smaller length of the bus-route, which 
are located in the center of the GRAN. The spatial 
distribution of closeness centrality (Cc) (figure 4c) shows an 
expected pattern, whether taking into consideration the 
network’s cutoff at the location of Attica. According to this 
pattern, the closeness-hubs are also being arranged along the 
bus-route and are close to the geographical centers of each 
network components. 
 At next, the spatial distribution of the clustering 
coefficient (C) (figure 4d) presents a rather simple pattern. 
High C-values are located at the central part of the north 
(above Attica) and south (at Peloponnesus) components of 
the GRAN, which concern the regions of Veroia-

Thessaloniki and Messinia, respectively. In this case, the C-
hubs are also geographically dependent and are distributed 
along the bus-axis. In contrast, the spatial distribution of the 
measure of modularity classification (Q) (figure 4e) follows 
a complex pattern, which however shows a geographical 
consistency. In particular, the north GRAN’s component is 
divided to six communities, the south is separated to two, 
and this of Attica forms six communities.  
 Except from the region of Attica, which includes the 
majority of the GRAN’s physical components, the 
communities shaped in the other two physical components 
(north and Peloponnese) of this railway network seem to be 
controlled by geographical criteria, complying with other 
empirical findings on railway networks (Sen et al., 2003, 
Barthelemy, 2011). Finally, the spatial distribution of the 
measure of spatial strength (s) (figure 4f) shows an inverse 
pattern in comparison with this of Cc, which is expected 
whether taking into consideration the calculation formula of 
s. Particularly, since s is computed by summing distances of 
edges adjacent to a given node, high s-values describe nodes 
that are more distant to their neighbors than others. In 
contrast, high values of Cc describe nodes that are closer to 
all the others in the network. Geographically, the s-hubs are 
located at the northern part of the GRAN, in the region of 
Thrace including the longest network edge.  

 

 

 
Fig. 4. Spatial distribution of the GRAN’s measures: (a) degree, (b) betweenness, (c) closeness, (d) clustering, (e) modularity classification, and (f) 
spatial strength. 

 
 
At the last part of the GRAN’s topological analysis the 
correlations of degree with the measures of betweenness 

centrality (k, Cb(k)) and spatial strength (k, s(k)) are 
examined, based on the scatter-plots of figure 5.  
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Fig. 5. Scatter plots of (left) degree and betweenness centrality (k,Cb) and (right) degree and spatial strength (k,s) for the GRAN. Square values 
represent averages for each degree class. 
 
 
 
Despite the obvious deficiency of cases, the fittings applied 
to the pairs (ki,

 
Cb

k=ki
) and (ki, 

s k=ki
), where i=2,3, may 

provide some useful insights. On the one hand, the relation 

 
Cb

k=ki
= f k( )  has a power-law exponent βGRAN(k-

Cb)=1.457, which is closer to the magnitude of the Global 
Cargo Ship Network (GCSN), where βGCSN(k-Cb)=1.66 (Hu 
and Zhu, 2009) or the North American Air-Transportation 
Network (NAAN) (Barrat et al., 2005), where βNAAN(k-Cb)~1.2 
than of classical road networks having an exponent around 
βROADNETS(k-Cb)~1.9 (Barthelemy, 2011). This observation 
implies that, although the GRAN is a land network, the 
forces controlling the relationship between hubs of 
connectivity (k) and traffic (Cb) are more similar to networks 
with “smoother” spatial constraints, such as maritime and air 
transport networks, than of land transport networks. This 
interpretation illustrates that the bus topology ruling a 
railway network is more optimum than this of lattice-like 
topology describing the majority of road networks. On the 
other hand, the relation 

 
s k=ki

= f k( ) , between network 

degree k and average strength 
 

s k=ki
, has a power-law 

exponent βGRAN(k-s)=0.854, which is closer to the magnitude 
of the road network cases, where βROAD_NETS(k-s)~0.7-0.9, than 
of maritime (βWAN(k-s)=1.3) or air transport networks 
(Barthelemy, 2011). This is in contrast to the previous 
observation, implying that the forces controlling the 
relationship between hubs of connectivity (k) and spatial 
strength (s) of the GRAN are more similar to those of land-

transport networks than of networks with lessened spatial 
constraints. Overall, the previously examined correlations 
illustrate that the bus-like topology of GRAN is more 
optimum in terms of traffic-management (ki,

 
Cb

k=ki
) than 

of distance-management (ki,
  

s k=ki
), comparatively to the 

road network transportation. 
 

3.3. Empirical Analysis 
This section empirically examines whether the railway 
infrastructure of Greece is related to other regional 
socioeconomic measures and indices. An independent 
samples t-test is applied on the available variables of table 2, 
which are grouped according to the dummy variable 
GRANINDEX distinguishing the prefectures with railway 
infrastructures (1) and not (0). Significant cases indicate that 
these groups (GRANINDEX=1 and 2), within the examined 
variable, are statistically different, implying that the 
existence of railway infrastructures is related to the observed 
difference and thus they may suggest a determining factor 
for this variable. The test is applied twice, first to variables 
including the metropolitan regions of Attica and 
Thessaloniki (n=51), which are the only exceeding the 
population threshold of 1.000.000 people, and second to 
variables excluding the metropolitan cases (n=49). This 
approach targets to capture any latent effects of these 
metropolitan regions to the available variables. The results 
of the empirical analysis are shown in table 5.  

 
Table 5. Independent samples t-test results for the equality of means among the variables of GRAN(a)  

Hypothesis of 
equal variables 

sα=sβ: 

Levene’s test 
for the equality 

of variances 

Independent samples t-test for the equality of means 

 

95% confidence interval 
for the mean difference 

F Sig. t d.f.(b) Sig.(c)  

Mean 
difference 

Δµ  
SE of the 
difference 

Lower  
limit Upper limit 

VARIABLE: GRNLENGTH (Road network length of each prefecture) 
n1

(d) assumed .000 .999 -1.972 49 .054 -163’290.5 82’800.42 -329’684.2 3’103.21 
n2

 (e) assumed .000 .997 -1.714 47 .093 -146’268.6 85’332.90 -317’936.2 25’399.07 
AREA (Prefecture’s area) 

n1 assumed .171 .681 -2.866 49 .006 -935.61 326.49 -1’591.72 -279.49 
n2 assumed .317 .576 -3.008 47 .004 -988.80 328.67 -1’650.00 -327.60 

GRNDEN (Road network density of each prefecture) 
n1 assumed .009 .927 .726 49 .471 22.21 30.59 -39.26 83.68 
n2 assumed 2.285 .137 2.400 47 .020 47.09 19.62 7.63 86.56 
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Hypothesis of 
equal variables 

sα=sβ: 

Levene’s test 
for the equality 

of variances 

Independent samples t-test for the equality of means 

 

95% confidence interval 
for the mean difference 

F Sig. t d.f.(b) Sig.(c)  

Mean 
difference 

Δµ  
SE of the 
difference 

Lower  
limit Upper limit 

PORTS (Number of ports included in each prefecture) 
n1 assumed .008 .930 .456 33 .651 1.07 2.34 -3.69 5.82 
n2 assumed .842 .366 1.083 31 .287 2.31 2.13 -2.04 6.65 

IPP (Volume of economic activities that a prefecture has access to) 
n1 not 

assumed 
 4.413  (f) -3.856 36.065 .000 -19.52 5.06 -29.78 -9.25 

n2 
not 

assumed 
 4.783  (f) -3.843 32.107 .001 -20.57 5.35 -31.48 -9.67 

DPP (Volume of economic activities developed within a prefecture) 
n1 not 

assumed 
4.530  (f) -2.227 26.478 .035 -40.49 18.18 -77.83 -3.16 

n2 assumed .979 .327 -3.688 47 .001 -17.60 4.77 -27.19 -8.00 
GDP  (Gross Domestic Product of each prefecture) 

n1 not 
assumed 

4.756  (f) -1.567 25.336 .129 -2.28 1.45 -5.27 0.71 

n2 assumed .344 .560 -2.667 47 .010 -0.47 0.18 -0.83 -0.12 
ASEC  (A-sector specialization of each prefecture) 

n1 assumed 2.669 .109 -1.350 49 .183 -0.02 0.02 -0.06 0.01 
n2 assumed 1.327 .255 -2.081 47 .043 -0.03 0.02 -0.07 0.00 

CSEC  (C-sector specialization of each prefecture) 
n1 not 

assumed 
 3.048  (f) 4.876 43.903 .000 0.14 0.03 0.08 0.20 

n2 assumed 2.150 .149 5.517 47 .000 0.15 0.03 0.10 0.21 
TGDP  (Tourism specialization of each prefecture) 

n1 not 
assumed 

3.034   (f) -.934 27.856 .358 -151.16 161.88 -482.84 180.51 

n2 
not 

assumed 
 6.780  (f) 1.244 28.060 .224 48.88 39.29 -31.58 129.35 

AGRINV  (Agro-industrial investments in each prefecture) 
n1 not 

assumed 
 4.100 (f)  -1.355 31.346 .185 -0.96 0.71 -2.40 0.48 

n2 
not 

assumed 
 3.981 (f)  -1.316 28.152 .199 -0.99 0.75 -2.52 0.55 

RPD  (Regional Productivity Dynamism) 
n1 not 

assumed 
.011 .915 -3.237 49 .002 -8.80 2.72 -14.26 -3.33 

n2 
not 

assumed 
.003 .955 -2.912 47 .005 -8.11 2.79 -13.71 -2.51 

POP  (Regional population) 
n1 not 

assumed 
 4.402 (f)  -1.587 25.411 .125 -242064.4 152541.14 -555’971.2 71’842.45 

n2 assumed .630 .431 -3.009 47 .004 -55964.64 18596.66 -93’376.30 -18’553 
WELF  (Regional welfare level) 

n1 assumed .021 .885 1.497 49 .141 8.32 5.56 -2.85 19.49 
n2 assumed 1.787 .188 2.449 47 .018 12.14 4.96 2.17 22.11 

EDU  (Regional educational level) 
n1 assumed 1.372 .247 -.366 49 .716 -1.78 4.86 -11.55 7.99 
n2 assumed 2.512 .120 1.364 47 .179 3.84 2.82 -1.82 9.51 

URB  (Regional urbanization level) 
n1 assumed .257 .614 1.129 49 .264 6.62 5.86 -5.16 18.41 
n2 assumed .228 .635 .909 47 .368 5.45 6.00 -6.61 17.51 

R  (TALC growth coefficient for the number of tourists) 
n1 not 

assumed 
 24.714  (f) 3.564 33.094 .001 0.00 0.00 0+ 0+ 

n2 
not 

assumed 
 21.799  (f) 3.487 34.295 .001 0.00 0.00 0+ 0+ 

RT  (TALC growth coefficient for the number of tourists) 

n1 assumed .244 .624 .197 49 .845 188.27 956.57 -1’734.02 2’110.57 
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Hypothesis of 
equal variables 

sα=sβ: 

Levene’s test 
for the equality 

of variances 

Independent samples t-test for the equality of means 

 

95% confidence interval 
for the mean difference 

F Sig. t d.f.(b) Sig.(c)  

Mean 
difference 

Δµ  
SE of the 
difference 

Lower  
limit Upper limit 

n2 assumed .120 .730 .109 47 .914 108.62 994.73 -1’892.52 2’109.75 
RST  (TALC growth coefficient for the number of night stayings) 

n1 assumed 1.178 .283 1.516 49 .136 0.00 0.00 0- 0+ 

n2 
not 

assumed 
 3.737  (f) 2.211 41.280 .033 0.00 0.00 0+ 0+ 

a. grouping variable: GRAN=0 vs GRAN=1 
b. degrees of freedom 
c. 2-tailed significance 
d. n1=51: including metropolitan cases 
e. n2=49: without metropolitan cases 
f. Not computed significance, based on the rejection of the test σ1

2=σ2
2. 

 
According to the results of table 5, the following 

observations can be made: 
 
• The prefectures with railway network do not have 

longer road network (variable GRNLENGTH) than the others. 
This implies that the railway and road transportation do not 
share competitive roles. 

• The prefectures with railway network are of 
greater area (variable AREA) than the others, a fact that is 
probably related to the massiveness of this transportation 
mode (train) and illustrates that railway infrastructures tend 
to be developed in sized regions. From another perspective, 
this result implies that a primary developmental force of 
railway network in Greece was the connection of land 
regions to promote agricultural productivity.    

• The non-metropolitan regions (n2=49) with railway 
infrastructure have lower road network density (GRNDEN) 
than the prefectures that do not have railway network. This 
result illustrates the competitive role of railway and road 
network in the Greek territory (excluding metropolitan 
cases). This observation, in conjunction with the previous 
concerning the variable GRNLENGTH, illustrates that the 
metropolitan regions seem to enjoy both (road and railway) 
facilities and, due to their size, to counterbalance this 
competitiveness. 

• The existence of railway network appears 
unrelated to the number of ports included in each prefecture 
(PORTS) and thus to the Greek maritime transportation. 

• The regions with railway network have greater 
indirect population potential (IPP) than the others, which 
implies that they have better accessibility to the economic 
activities of the other prefectures and thus better potential to 
regional growth. 

• Similarly, the prefectures with railway network 
have greater direct population potential (DPP) than the 
others and thus better accessibility to the economic activities 
being developed within their region. 

• The existence of railway infrastructure is related to 
the regional domestic product (GDP) just for the case of 
non-metropolitan prefectures (n2=49). In particular, the 
regions of the Greek territory with railway network appear 
higher GDP values than the others, a result that verifies the 
general interactive role between regional development and 
transportation (Polyzos, 2011), but it also illustrates an 
outdated growth model between transportation and regional 
development in Greece, which is probably immanent from 
the industrialization era, where the railway infrastructure 
was a fundamental factor of regional development.  

• Also, for the non-metropolitan case (n2=49), the 
existence of railway infrastructures is related to the regional 
primary productivity specialization (ASEC). Particularly, the 
regions of the Greek territory that have railway network 
appear to be more specialized in the primary sector than the 
other regions. This observation, despite that it does not 
suffice to document causality, implies that railway 
infrastructures of the country facilitate agricultural 
productivity. From the planner’s perspective, this result 
interprets that a major criterion for the railway network’s 
design in Greece (initiated at the late 1860s) was obviously 
to facilitate the regional development, which was supported 
mainly by the primary sector at that time. Capturing such 
information from a modern socioeconomic data set, 
illustrates that the productivity basis in the regions of the 
Greek territory remained constant and controlled by the 
primary sector, which although is a positive insight in terms 
of stability it necessitates examination, as a further research, 
in terms of evolution.   

• Complementary to the previous observation, the 
regions with railway network are less specialized to the 
tertiary sector (CSEC) than the others, which validates the 
outcome of the test for the variable ASEC and its relevant 
interpretations. 

• The existence of railway infrastructures appears to 
be unrelated to the tourism specialization (TGDP), implying 
that the Greek tourism is supported by other transportation 
modes that are obviously more modern than rail transport.  

• Further, the existence of railway network appears 
unrelated to the distribution of the agro-industrial 
investments (AGRINV), despite that it is found to be related 
with the regional primary specialization (ASEC). This result is 
an aspect of complexity ruling the agro-industrial 
investments in Greece, which seems not to follow the 
traditional model of “regional development-transportation” 
that described the t-test results for the variable ASEC. 

• The prefectures with railway infrastructures 
present better performance in regional productivity 
dynamism (RPD), verifying the observation about the 
contribution of the railway network to the regional growth. 

• Next, the existence of railway network is related to 
regional population (POP) just for the non-metropolitan 
case (n2=49). Specifically, the regions of the Greek territory 
with railway network appear denser in population than the 
others, illustrating that the GRAN structure is gravity 
controlled. The fact that the metropolitan case (n1=51) does 
not provide significant results seems to be more due to 
heterogeneity in magnitude of metropolitan cases that 
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increase the range of the confidence intervals rather than of 
any other physical interpretation, since the metropolitan 
regions are denser in population than others.   

• In accordance with the population case, the 
existence of railway infrastructures appears to be related to 
the welfare index (µεταβλητή WELF), also just in the non-
metropolitan case (n2=49). This result expresses that the 
regions of the Greek territory with railway network are less 
prosperous than the others, which implies the low “quality” 
level of services related to railway transportation. 

• The existence of railway network is unrelated both 
to the educational level of population (EDU) and to the 
urbanization index (URB) of the prefectures. This seems 
reasonable, whether taking into consideration that the 
railway is a mode of massive transport that is accessible to 
all socioeconomic layers, whereas EDU and URB are 
variables related to higher level of social activation. 

• The prefectures with railway infrastructures 
appear more tourism saturated (R) than the others. This 
result, in conjunction with the unrelated behavior captured 
for the variable of tourism specialization (TGDP), implies that 
while the GRAN is a transportation mode serving tourism, 
this functionality does not succeed to be profitable to the 
regions equipped with the railway facility. 

• The existence of railway network appears 
unrelated to the TALC growth coefficient for the number of 
tourists (RT), which complies with the previous result and 
implies that although the transportation infrastructures in the 
country of destination serve tourism, they do not suggest a 
tourist attraction by themselves.  

• Finally, the railway network is related to the TALC 
growth coefficient for the number of overnight stayings 
(RST), just for the non-metropolitan case (n2=49). This result 
expresses that the tourists visiting Greece prefer to stay less 
days to regions of the Greek territory that have railway 
infrastructure than those they do not have. This may imply 
that the regions with railway network are more specialized in 
tourism by providing transportation services than to offer 
any other attraction or leisure facilities.   

 
 

4. Conclusions 
 
This paper studied the Greek railway transportation network 
by using complex network analysis and empirical approach. 
The purpose of the study was to detect the socioeconomic 
information immanent to the GRAN’s topology and to 
provide insights about how the network structure of this 
transportation network serves and promotes regional 
development. The GRAN was constructed in the L-space 
representation as a non-directed graph, where nodes 
represent route intersections and edges express intermediate 
railway routes. The topological analysis showed that GRAN 
is submitted to obvious spatial constraints, which were 
evident by the peaked shape of the degree distribution, the 
resemblance of the GRAN’s spy plot with this of a lattice-

like null model, the lattice-like indication of the ω-index (for 
the small-world property approximate detection), the 
typology of the correlations (k, Cb) and (k, s), the 
geographical coherence of the community detection, and the 
patterns revealed in the spatial distribution of the 
fundamental network measures.  
 The topology of the GRAN appeared to share lattice-like 
characteristics, which are consequent to the spatial structure 
of this network. However, certain findings, such as the 
inequality detected between the average degree and average 
nearest neighbor degree, the spatial distribution of the 
measures of degree and closeness centrality, and the power-
law exponent of the correlation (k, Cb) provided indications 
that the topology of this railway network is better than a 
lattice and resembles to a bus-like topology. 
 The empirical analysis was applied to a set of node-
variables (with elements values computed for each node) of 
the GRAN, with network, spatial, economic, demographic, 
and tourism information. In order to detect the influence that 
the metropolitan regions (population > one million) of Attica 
and Thessaloniki have to the configuration and functionality 
of railway transportation in Greece, the empirical analysis 
was separated into two parts; the first including in the 
variables the metropolitan cases and the second excluding 
them. Afterwards, an independent-samples t-test was applied 
for each part, by grouping the variables to cases including a 
railway network and to those they not include railway 
infrastructures.  
 The results showed that railway infrastructures in Greece 
are developed in sized regions, support access to own and 
other regions’ economic activities, operate competitively to 
tertiary specialization, and although they serve tourism they 
do not provide tourism specialization. Especially for the 
Greek territory (non-metropolitan case), regions with 
railway infrastructure have greater population but less road 
network density, are more specialized to the primary 
productivity sector, are less prosperous than others, and are 
related to tourism more by providing transportation services 
than to offer any other attraction or leisure facilities. 
 Overall, the analysis provided evidence for the utility of 
complex network analysis in regional and spatial studies, 
showing that the GRAN enjoys an effective architecture of 
bus-topology, but its socioeconomic functionality is not as 
effective as its topology. The railway infrastructures in 
Greece seemed to follow an outdated growth model related 
to the support of primary productivity, but without 
promoting the welfare of their regions equivalently. This 
finding should alert the policy makers to focus on the 
direction of upgrading the railway facilities in order not only 
to be profitable, but also to facilitate the way of living. 
 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  
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