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Abstract

This paper discusses the evolution of adaptive filtering, filter structure, adaptive algorithms used for noise cancellation
over the past five decadeshd field of adaptive signal processing has been matter of research for éd@ry8ars. The

major growth occurred in this field in eighties because of ahailability of implementation tools and textbooks.
Adaptive signal processing has made a significamtribution in the last 50 years. The applications of adaptive signal
processing are very appealing because of its properties like low costing, constancy, fidelity, small sizes, and adjustability
This revolutionary change brought along with the prolslerhnoise and the solution is the design of the adaptive !lter.

This paper mainly focused on adaptive filter, and its structure, the Least Mean Square Algorithm (LMS) and Normalized
Least Mean Square Algorithm (NLMS), used for noise cancellation. Ther papld serve as a survey for beginners and

as a reference to select the related reference of their field.

Keywords:Adaptive filter, Adaptive filter Structure, Adaptive Algorithm, Least Mean Square algorithm, Noise Cancellation.

1. Introduction filter. The adaptive algorithm now try to minimize this error
signal as minimum as possible. Thésror signal is an

The designing of electronic system mugipendupon the important parameter to judge the accuracy of élgor

different type of noise and distortion. The noise can bealong with itsconvergence.

added during the process of signal through a channel due to So to design an adaptive noise cancellation system th

the slow or fast variations of its properties. As most of theoints listed below needs to be taken care of:

time the variations are unknowno it is adaptive filtering

that @mpletely eliminates the signals distortion. So the | Input Signal
adaptive system is something whose structure is adjustak x(n) @
as per its performance or behavioline main quality of the + Noise Corrupted Signal
adaptive modek its time vaiance andself-adjustingnature. + Sig(n)=x(n)+No(n)
The adaptive filter with adaptive algorithm finds its Noise Signal
application in adaptive noise cancellation. No(n) ]

The concept behindadaptive noise cancellation is i +
discussedn the Fig 1lbelow. An inputsignal x(! ) passeso
a sensor that alsacceptsnoiséd !!!. This noiseNO (n) is | Correlated Noise Weights of 5 .
not mrrelated with the signal. The input sigmaimixedwith Noise Signal Adaptive Algorithm | fijrer Qutput Error efn)
the noiseand forms a noise corruptedsignal {"#(!)! Ni(n) Filter w(n) yin)
() 1,111 or the noisy signalThere isa second sensor
which capturesnoise ! |!!'! which is not relatedwith the 1
signal but somehow correlated with the first noise  Fig. 1.Basic Concept of Noise Cancellation
signal! ,!!!. This gives the referee input to the adaptive
noise canceller model. The output!! is produced by
filtering the noise! |!'!! thatshould be as close as possible 1. The input signals which is being treated by the
toll | 11'l. The generatedutputs getsubtracted from the adaptive llter.
noise corrupted signal and produce the requisigghal 2. The structure of the filterthat shows the
LILLIL L1 1L, The adaptive filter is an adequate mathematical relation between output and input
concept that can be able to adjust its transfer function via an signal
adaptive algorithm. Thedaptive algorithmis to minimize 3. Parameters inside the structure that crange the
the errorsignal. This error signal is feedback to adaptive input output relationship of the filter.

4. The most importanis adaptive algorithmrequired
to update the parameters of the filter.
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So in this paper we provide the journey of adaptive !lter, respect td '!!! is taken then it shoulde equal to zero for
filter structures, the basic adaptive LMS algorithm and onell positive values.
of its variant i.e. NLMS.

The organization of this paper is as follows: Section 2 ' _L_yq1yit))1 | {! ( !!!(!)}l ! (4)
gives an overview of adaptive filters; Section 3 discusses thd '!!! = ' ! RO
different filters structures. Then in the Sectiérthe basic i
LMS algorithms and its literature will be shown. Further With
Section 4 discusses the advancement done on one variant of
LMS algorithm i.e. NLMS and challenges faced by thosd 1)1 1 (1)! Z! MY D e
algorithms. The last section concludes the journey. i

[

It follows that
2. Adaptive filter

ottt

Norbert Wiener [1] pioneered research was focused on' '

designing of adaptive filter. The aim of Wiener was to design g Eq. (2.1.4) become

a filter, which would produce the least mean square error to

measure the desired signal. The designing of the filter wasg «;yyrer 1 1)y rumme 1 rw o0

based on the statisal parameters like estimated mean,

correlation of output signal and the input noise. Thisis theprinciple oforthogonalitySubstituting Eq. (5)
, , into Eq. 6)

2.1FIR Wiener Filter

By using the Wiener theory, the concept of the adaptive? 'TOHEENY

recursive LMS' filter was first prqppsed by B.Widrow and RO

Hoff (2]. The fllter'des!gned wasinite Impulse Respgnse !)”}!! F I cz)

(FIR) or nonrecursive filter. The drawback of n@acursive

filter is, it has a finite impulse response (FIR) and can only

realize zeros of a digital filter transfer functidhe recursive

filter is one which is structurally caplabof realising both

zeros and poles of digital filter transfer function. It must also \

have infinite impulse response controlled by adjusting itd ¢! ¢ DU Dy Lt ) and

weighting coefficient. This theory is given and proved by \

B.Widrow, S.D.Stearns [3] and S.T. Alexnader [4].eyh ' ()FC T Dy 1. 111 and

have proved that the most common adaptive filter used

during the adaption process is the FIR filters because théyd (7) becomes

are stable and easy to implement. The outcome of FIR

Wiener filter is the least measguare of a given signal d(n). <1 LA DT T ()M

Finally, since x(n) and d(n) aedike Wide Sense
Stationary then

It is assumed that inpignal and desired signal are jointly IR I i
wide-sense stationary with known autocorrelations, rx(k)!" !

and rd(k), and known crosrrelation rdx(k). J. R. L ) ] )

Treichler , M. Bellanger , S. Haykins , and A. H Saye8]5 This is a set of p linear equations in the p unknowns
in their book denoting the unimpulse response of the W(K), k=0.1,...,p1. In matrix form, using the fact that the
Wiener filter by w(n), and assuming a{pstorder filter, the ~ autocorrelation sequence is conjugate symmétri¢, !

system function is 11 (! 1) Eq. 8) becomes
1 SRR GIHGIEREGED b
o) Z! (10T I NOIOIURRIEED) L)
w (oMo 1) !(1!) |
With x(n) the inpussignalto the filter, the outpusignal ! !
is denoted by !'!'!, is the convolution of w(n) with x(n), 0 Do N Dol !! "

o e (1)
ROOEED RO NIRRT e (M)
[TH] !|" (l )
. o i (9)
The Wiener filter modeheed to getthe coefficientof !
the filterw(k), thatreduceshe mearsquare error !
P 10D 1T

This is thematrix form of the WieneHopf equations.

In order to minimize set of filter coefficients!, it is Eq. ©) may be written more concisely as

necessary and sufficient that if theerivative of ! with L

! T TN (10)
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time required for computationFor the case of infinite
wherd! , is ap x pHermitianToeplitz matrix of variance impulsive noiseand nonGaussian densities
autocorrelations, w is the filter coefficients, ahd is the  Wiener filter theory is not meaningfufFor nonBGaussian
vector of crossorrelations between the desired signal d(n)densities, zero forcing LMS is proveappropriate filter

may be evaluated from E@)(as follows. With which wasdesignedy Bodenschatz and J1$14].
ResearcheK. C. Ho [15] has done thémplementation
11l {|| (| )l'} 11 { ([ )[ ([ ) ] Z:"I' 1 (|)| (| | I)]I} 1 Of two adapt'ive filters in tandem. Thlmpe.r has shown the
nr implementationof convergence characteristics and tracking
RUGING ORI (11)  pehaviour oftwo adaptive filters in tandenk.C.Ho. has
also showna comparisorof its performance wittonly one
Supposehe filter coefficient !!! is given aghe soluibn to  adaptive filter The algorithm used was Least Mean Square
the WienerHopf equation, thent follows from Eq. 6)  and the parameters studied were mean sqeraoe lag bias,
that 11 (1)!'( 1 1)L 1. Therefoe, the second term in andlag variancelt has been observed that, the tandem of
Eq. (11) is equal to zero and two adaptive filter decreases the convergence speed as
compared to gingle adaptivdilter with small step size
e DL I3 L) B o Just a year afteK. C Ho [16] given the concept of
DIt e+ multiple LMS - adaptive filters in - tandemThe  paper
discussedabout stedy state erroand its effectbecause of
Finally, taking expected values noisefinding lag bias and varianc&he Gaussian signal was
taken as arnput signal. For all those cases where the step
Lo 1 LAY T 1L 13 size of filter is equal and smathe error due to noise grows

linearly and the lag bias decays exponentially with the
number of filters in tandem.

Li. Tan and Jean Jiand 7] designed a filter named as
Volterra filter It has been observed thadises comes from a
dynamic system may beonlinearand deterministic noise
rather than a stochastic white noise Volterra filter based
on a multichannel feed forward structumeas able to
| overcome it Undesirableeffects of any instability that may
L e 21S€ inthe filter can be avoided bgddition of saturation
i operation at the outpytl8].A variable step size adaptive

he minimum error may also be written explicitly in terms offilter has also been designed by Jingen Mi et al
u . y ais plicitly . [19].Recentlythe Wienerfilter has been implemented using
the autocorrelation matrix Ryand the crossorrelation

matrix rdx as follows: wawelet transform by Smital et dR0]. The goalof the
’ authorwas toget a perfect filter bank and find all parameters
O O GO I O O I W TR ?;t‘)'\l'é?nhegsf!}]egv&:hfrrr:\foﬁfﬂfr']\'ggnoengtjr?ri]gg;g;;g‘:tion

or, using vector notation,
P B O R YL (14

Alternatively,since

The Weiner filter is not suitable fononstationary tapie | Revolutionary Years for Adaptive filter generation

signal. For such a kind of situation the filter has to be-time;— .2 T Author Contribution | References
varying and the solution for this is the Kalman filter.
N . . 1949 Nobert Design of wiener [1]
2.2 Evolution in Adaptive Filter Wiener filter
R. Kalman [9] claimed that the Kaman filter can be 1950 R.Kalman | Design of Kalman [9]
considered asxtension of the Wiener filtering concept. The _ ~ filter
objective of Kalman filter io minimize the least square 1985 | Nehorai, A '-}'(”'T bemeed” (10]
error of anonstationary signal corrupted withnoise. In Wiener fittar
shor{ Kalman filtering deals with random processes qggg Ahmend s Pontryasih 11
described using statpace modellingFor a discrete non minimum
stationary finite dimensional processliak betweenthe principle to design
Wiener and Klman theoryhasgiven by Nehorai etal [10]. ) afilter i
The time varying rdization and theelation between input ~ 199° Erl'.c CO”CIept ‘.’Ifm“'t' (23]
d output is ats explained The authors havealso rhonines delay fiter
an : p p . . 2000 K.C.Ho Theory of two [15]
described the statgpacefor nonstationary process and tried adaptive filter in
to explain Kalman gain with respect to Wiener theory. ) tendom
A new filter based on Opontryasih minimum principleO 2001 K.C.Ho Theory of [16]
has been desibedby Ahmed set al.[11]. The best part of multiple adaptive
this method isit eliminates the need to calculate man filter in tendom
s o . Yy 2001 Li Tan Generation of [17]
constant parameter3o update the coefficient of the filter Volterra filter
the Saura Das Guptd §] has giveran option of a prediction 2003 H.K. Kwan | Adaptive digital [18]
error term In this method, theadaptive algorithmwas _ . IR filter
updated bya signum functionjust by manipulating the 2010 Jingen Mi Qz‘éagz?r'sjlt;e (19]
convergenceatefor high ordgr. . . . 2013 Smital Adaptive Wavelet [20]
The concept of generalized multi delay filter was given Wiener Filtering

by Eric Marlines [13]. This conceptreducedthe amount of
152 !
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3. Adaptive Filter Structure by Gao, F.X.Y et al[35].Those kinds of filterscomes in
picture when there is a need of extendedmories This

The adaptive filter realization is divided into two parts, Thestructure will be useful to reduce computation for gradients
FIR (Finite Impulse Response) filter anlR (Infinite  and useful for real time signal processing.
Impulse Responsefilter. The most common and most Tabus, I. [36] proposed a gradient based maximization
popularfinite impulse responsadaptivefilter is transversal routine to [IR filter with bst parameters.lIR filters
filter. This is al zero transfer functiorfilter. This filter  outperforms with same parameters with good gain then FIR
implemented with direct form without feedbaek in this filter. Later a hybrid model of FIRR adaptivefilter was
casethe output of this filter is a linear combination of its introduced byPasquato, L[37], with the aim to deflateain
coefficient. problem of adaptive IIR filter.

The adaptive infinite implse responsadaptive filter can To detectand estimate the frequency of sinusoidsh
alsorealizewith direct form It is a recursive filter so there Gaussian noisea new secondrder lattice form structuref
are so many problems associated with it. It convergesadaptiveinfinite impulse response (IIR) notditter was
slowly; depends on thdilter structure andneed some proposedby Hong, Lianget al [38]. This wasdone ly
criterion to monitor the stability of poles. Tavercomeall utilizing least square kurtosis of output signals as a cost
these problems, other options likeascade, latticeand  function; the new gradieAba®d algorithm updates the
parallel realizations are available The analysis and frequency of thedaptivelIR notchfilter. Tablell has shown
implementationfor theuseof noncanonicaFIR filters has  revolutionary time dring past years for the FIRnd IIR
done by Stewart, R.W and Soraghan, [R1]. They have structure
shown that for allgradient based algorithm the non
canonicalfilter is not a good choiceSo it is importantto  Table 2. Revolutionary Concepts Given in the Field of
reformulate the classical adaptive algorithnand re FIR/IIR Structure

analysedor parametes like convergence and stability. Year Author Contribution References
But it has beershownby authos Gan, W.Set al. [22]

that noncanonicalFIR structure, performed better in terms 1989 M. L. Non Canonical [20]

of reduced excess mean square error level, faster Filter Structure

convergence evewith anabruptnoise environmentBut at for FIR

the same timét will be important to take care of step size 1993 | Kwan, H.K. | Delayed NPath [23]

and nonstationary characteristicshoitcanonicalstructure. Structure for FIR
ResearcherKwan, H.K.and Li, Q.P [23] proposed 1994 Forssen U Cascade [24]

delayedN-path structurefor high-speedadaptivelinear Structure ¥

phase FIR andiR digital filtering .The resulting throughput order for FIR

rate ofthe designed system usinggdth structure reaches 1998 | Prandoni, P Cascade | [25]

2N2times then the old adaptivefinite impulse response Structure

digital filter. Result obtained was high speed structure for order for EIR

adaptive noise cancellatiofhis filter with cascade structure

updated with gradient algorithr@4] showsslow adaptiorto 1981 | R. A.David Cascade |  [26]

find the value of errorTo overcomehe disadvantage dirst Structure for IR

order cascade FIR structure, teanredearchePrandoniet I

al [25] hasgiven asecondorder cascadd_MS filters. This 1989 | J.J. Shynk | Parallel structure| [27]

designwas ableto modelmost input signals, wittsmaller for IR

mean square errahan least mean squarer lattice least 1991 J A Lattice Structure|  [33]

mean square o Rodr«dguez for IR
Many structure of IIR realisation has also been Fonollosa

|mplgmented. A modified cascade structure.for IIR adaptive; g9, Gao, F.X.Y Recursive state [35]

algorithm was introduced bguthos R.A. David et.al [26]. space filter for

J.J.Shynk 27]. They have alsopresented several parallel IR

form adaptive IIR filters thaincludeda frequency domain

implementation based recursive frequency sampling2001 | Pasquato, L | hybrid FIR/IR [37]

structure. In order to improve the performance of IIR based adaptivefilter

systems several modifiedtructure hadeen introduced such combination

as improved parallel realization ffinite impulse respose 2009 | Hong, Liang | Lattice structure (38]

adaptive filters based on frequency domapproach.The for IIR notch

frequency domain implementationled to increased filter

convergence rates ataver computationatomplexity R§].
Lattice structure stability can be achieved during the

adaptation procesby D. Parikh, N. Ahmed, and S. D. 4. The Adaptive Algorithm

Stearng29]. A new adaptive lattice structumeas proposed

by I. L. Ayala [30], lattice form algorithms for adaptive IR After adaptive filter and structurép update the coefficient

by J. J. Shynkand group [3Lnew normalized lattice of adaptive filter; adaptive algorithm is requirddhe aim of

algorithm by M. Tummala [32], Gradient calculation in adaptive algorithm is to adjust the weights of adaptive filters

adaptive IIR lattice filtersby J. A. Rodr«[33] and fast tap vectors to minimize the error. To choose the particular

parallel realization for lIIRby P. S. R. Diniz et aJ34].0ne  adaptve algorithmits computational complexitpas tobe

recursivenonlinearstate spag filter has also been designed taken care of. The tap weights affilter can be updated

using WienerHopf equdion. The mainattraction of adaptive
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algorithm is, it can starts from any initial points and slowlyMean Square (LMS) algorithm. This algorithm is a part of
move towards the mainomt. There are so many search steepest decent method, which requires an estimafithe
algorithms those were derived to minimize the cost functiorgradient signal at each iteration.

real statistics. The most common algorithm used is Least

Start With Start Without

Initial Point

!

Arbitrary Weight
Vector Matrix

=

Tap-Weight Vector Matrix from
Previous Cycle : W(n)

|

Initial Point

l

Zero Weight
Vector Matrix

l

/

T Z

( Process Termination )
Updated Filter
Weight
W(n+1)
Tap-Weight Vector Adaptation:
W(n) + 2pe(n)x(n)

Step Size (
output
Weight Vector Matrix is e(n) n)
Transposed
( W(n) > WT(n))
Error Estimation:
Input Signal Transposed Desnr::in?gnal —_ Desired Sigdr():; : O(u:t)put Signal
Vector Welght Matnx( i
x(n) ]]
_ Fllterlng : Output Signal

Error Signal

Transposed Weight Vector is Multiplied
by Input Signal Vector

y(n)

/)

Fig. 2. Flow chart for LMS algorithm

Table 3. Basic Parameters for LMS algorithm

Input Parameters:
--#$#%&#-%$#($%& I !

."#$%" ...................................................... ! )
I"#$ | 1"HBIN"H"S% ok
Constantt

Filter order!

Output Parameters:
Filter output!! (1)
Coefficient vector: Procedute:(! ! 1)
Computation Procedure(Real Valued Functiong
RN (INIRIE(IN(]S
RIENE(IREDE

Pyt )y rearta)

Computation Procedure(Complex Valued
Functions):

pmmrrrrn e

P e ni

pmm oy E ) et

TheLMS (Least Mean Squayalgorithmwasintroduced
by B.Widrowand M. E. Hoff[39]. LMS algorithmestimates
the gradient vector fromavailable dataLMS is an iterative

mean square errorldw chart of he algorithm is shown in
Fig 2.

Table 1ll shows input, output parameter, step size
notation and the equation using which weights has to be
updated. The adaptive filter using steepest descent has tap
weight vector equation given by

R T O O A (N D YR (S LT
There is a practical limitation with this algorithm is that
the expectation! !! (1)!'1111 is not known. So it was

replaced by taking estimated sample mean.

Ty !!—Z!(! RN

Combining this estimate with the steepest descent
algorithm, updated equation fbr, becomes

i—Z!(! Dt

Dt LU e e

A special case of above equation occurs if it use a one
point sample mean (L=1),

REGIRGIIRIGIN(

procedure that makes successive corrections to the weight

vector This is donein the direction ofnegative of the
gradient vector whichin course of timdeads tominimum

154

The update equation to weight update assumes a simple
form and is known as LMS algorithm.
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Doy DD e ()R ) 2 1) transform using cosingine symmetriesby Vasanthan
i Raghvan etal [47].
It is simple because it caqpdate for kth coefficienthat Concluding this sectionLMS algorithm is the most
requires only one multiplication and one addition. popularused algorithm in adaptive filteringhe important
features that force everyone to use LMS algorithm goed
N N AR N N N (B TR (R AR YT ) convergence in stationary environment, stable behaviour,

low computational; complei and finite precision

And because of that an adaptive filter based on LMSrithmetic. This section concludes usifigble IV shown
having p+1 coefficient require 2p+3 multiplications andbelow. It shows years those contribute with adaptive
2p+2 additions per output value [40]. The advantages adlgorithm or given new concepts abotite adaptive
LMS are, its simplicity and numerical stability. The algorithm for adaptive noise cancellation.
limitation are its slow convergencand may not respond
well in nonstationary environment 4.1 Variants of Adaptive Algorithms

In last case,weight vector matrix consists of arbitrary This section will discuss all those algorithms implemented
weight. The tap weight from the previous cycl¢ is! |, and  using adaptive filters and are derived from conventional
weight vector matrix transgedis ! ' (1)! The transposed LMS algorithm. The objective behind deriving other
weight matrix { ' (1)) is multiplied with the input signal algorithms than LMS is to reduce computational compyexit

vector !!!l'! through filtering and giving the output Or convergence time.
signal! !!'!. This is followed by error estimation which is
obtained as desired signal! ! minus,output signaly!!! . Table 4.Revolutionary Years fotMS Algorithm for Noise
The error signal output'! | together with step sizeis used _Cancellation
for tap weight vector adaptation(!x)! !"# 111111 . The _Year | Author Contribution References
filter weight is updatednd processs followed recursively 1960 | B.Widrow LMS has been | [39]
till it terminates41]. and M. E. introduced

LMS algorithmbased on the method sfeepestdecent Hoff
searchmethod andvas conditionally stableThe researcher 1978 | Frank F. Modified LMS | [42]
Frank F et al [42] presented a modified LMS algorithm, has been
which was uncontibnally stable and achieveame mean introduced
steady state weight as LMS. Modified LMSILMS) can 1992 | J.Thomos | SWIM has been | [45]
apply to noise cancellation filters for the case of ideal and generated
leaky integratio. The modified LMS algorithnis used for 2002 | Adel A. Failure time [61]
stationary input. Zerai analysis of LMS

For nonstationary input signals the statistical efficiency2004 | R. A. Soni | Low complexity | [66]
of LMS algorithm wasgiven by B. Widrow. Thenlimiting datareusing
behaviour of LMS algorithm wagiven by Victor solo [43]. method
The idea was to control excess mean square error. TE&09 | J. M. G—iriz| A novel LMS [77]
reason to controbxcess mean square error was gradient algorithm

noise misadjustment and lag misadjustment performance. It
has beeneenthat the classical lag misadjustment formula
had missing additional ne¢ misadjustment and variance An extended approacto reduce computational complexity
terms. That formula is completed byvilliam A. [44] and  of LMS algorithmwas doneby W.A. Sethares and C. R.
proved thatfor local experimental stabilitypersistence of Johnsor{48]. They haveshown thepersistencef excitation
excitation criterion isequired condition, which guarantees linear
It is alsoimportant to reduce weigtfunction by high  stability of thequantizederror form. The quantizeaerror
variance data so thers a needof new non gradient algorithm reducesthe computational complexityfdMS
algorithm thaican reduceadaptive filter weight fluctuations. algorithm. Thistheory is given by E. Eweda, J. C. M.
This algorithmshould adapt singleweight at each time Bermudez et al and W.A. Sethares et at$49throughthe
step andshould be givesame computational requirement as error signal with short word length or by a simple powkr
the LMS algorithm.J Thomos [45has givenan algorithm  two number B.widrow and S.D Steanrns§2] implemented
namedas SWIM (Single Weight lteration Methadyhis ~ LMS-Newton algorithm. Thay worked onthe convergence
algorithm used non gradient search techniquékhe  speedof algorithm which was independent of the eigen
advantages of SWINMgoithm are: very fast convergence, value of the input signal correlation tria. This isdoneby
low computational requirement, minimum weight finding the estimated value dhe inverse of input signal
fluctuations, guaranteed convergence, snubt affected by correlation matrix.But it leads to ample increase in the
the input signal with large variancBWIM hasalso carries computational complexitys].

some drawbackéike, misadjustmentfExcesserror, rate of There is another sidef the LMS algorithmtoo which
convergence,stability criterion, effectiveness on different needs to improvés; its implementatiorin time domain. The
type of data input. LMS algorithm implemented for noise cancellation in

A nonlinearanalytical modefor adaptive algorithnwas  frequency domain and time domain is compared by Francis
proposedoy Neil J Bershad et g§46]. They haveshownthe A reed et al[54]. The resultrevealedgreater amount of
quantization effect of LMS algorithm with the power of two reduction in computation complexity then the time domain
step size.Later analysis of real Fourier transform basedwith white noise inputThe frequency domain algorithwes
adaptive algorithnhasbeendone andestedwith the Hartley ~ implemented using FFT. In frequency domain, it is also
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possible to find mean and variance of the tap weights df, the input signal othe highly correlated filter resultarge

adaptive filters. spread of eigen values of autocorrelation matrixwhich
It was concluded by M. Dentno et 8. S. Narayan et,al causes algorithrto slow downagain
D. F. Marshall [55-57] that the filteringin the transform The failure time analysis for LMS algorithms shown by

domain resultgreatoutputin terms of convergence speed Abel A et al [61]. A system failure may depend upon the
due to less computational complexity than the time domaieccurrence of a large error and clumps of large errors.
filtering. They have used DFT (Discrete Fourier Transform)Poisson approxinteon has been used to stufhjlure of the
and DCT (Discreet cosine Transformadaptive filtering  LMS algorithm in time domainral its three signed variants.
algorithm especially for speech signal processBigt.there  For fast convergenceffine pojection algorithm has been
are two problemsfound by J C. Lee,C. K. Un N.J. described by K. Ozeki and T. Umef&®]. Its faster version
Bershad ,P.L. Fleintechh S.Shankar Narayan and A.M. wasgiven byS. L. Gay el at§3]. How faster convergence
Pelusj [58-60], one as the order of the filer increassstep  impactedthe applicationsywas aescribed byesearches. G.
size decreases andbsults slow algorithmSecond poblem  Sankaran and A. A.

( Process Temmination >

R o—— | Lpdal-’dl‘-illa
Waight
Win+1)

Start without
Initial Point

Start with

Initial Point

[l

Arbitrary

Zezro Weight Waight Vactor
Veacrtor Matrix Niatrix
Tap -Weight Vector Adaptation :
Tap-Waight vector Matrix from Pravi < | Win)+-2ua(n)x(n)
Cyele - Win)

Egror Signal —
Weight Vector Natrix is Cutput = -
Trzospassd en)
(W) > W(n+1))

Error Estimation.
Transposed Da;uac ng" > Desird Signal - Output Siz 5-41
W »xﬂ't \&u:x n)yyi(n)

Filtering ;. 2 Output Signal
Transposed weight Vector is Multiplisd by w(n)
Input Signal Vector

I

Input Signal
Vectorz{n)

Fig 3. Flow chart of NLMS algorithm

Nommalized
step si= (B
Safety Facor
)

reduces the next step that reduces mean square error after
Beex[64]. It has also been seen that if the input signal ivery iteration. Now to improvéhe convergence rate, a
extremely correlatethen thereis dways atradeoff between  variable convergence factor uk has been employed. The
the convergence speethd computational complexity6p- equation become
68].

in a data dependspon p that appears explicitly within

algorithm is proved by N.J Bershadandandlirvine [69. Table 5. Basic Parameterd bILMS

Authorswerealso evaluated the transient mean and secorhdnput parameters:

momert behaviour of the modified LMS (NLMS) algorithm.| n#$#%&# %8#$%& M (1)1 11

It was evaluated by taking into account that expliGiti"#$oaI"#$o6&1 (1 )IN"#$%"&"#$"# 111 (1)

statistical dependence uppnof theinputdata.Keeping all | 1m4$ 1 1"#$1"4#"$%&%#, Constant! , Filter ordert
these points in mindhe NLMS (Normalised Least Mean| output Parameters:

Square) algorithm introducedby F. F. Yassa[70]. This | Filter output! (! ), Coefficient vector: Procedute(! ! 1)
algorithm increas# the convergence speed dfMS | computation Procedure (Real Valued Functions):

algorithm without using the estimates of the input signal OININGTIREGIHNGS
correlation matrix.Here the basic parameters used for the
NLMS shown. NIRRT NIRRT RINE

NLMS were derived from the part of nonlinea
stochastic gradient LMS algorithm. This is done by choosipg ! 11T i e 'WI AR

normalized time varying step size parameter. This param“@fomputanon Procedure (Complex Valued Functions):
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NIRRT IR minimization d Euclidean distance betwee®reight vectors.
RGO IREGIRED) This providesall inclusive comparison between almost all
adaptive algorithmslike LMS, Modified LMS (M-LMS),

He e Error Nonlinearity (EN-LMS) etcThe advantages of NLMS

IRONO)

are;faster convergence, automatic time varying choicthe
LMS step size parametesteady state mean square error and
gég)dconvergence speed of the algorithm.

To adapt individual filter parameters, individual
convergene factors have been proposbyd W.B. Mikhel
[78]. The author has alsoworked on to adjust
the convergencédactorsof individual parametein realtime.
R.W.Harris[79] has used &echnique; wheréor each weight
of an adaptive filterwith transversal realizatioarries a
feedback constanthis is a new way for the implementation
of LMS algorithm.

LMS algorithm is in demand because of its simplicity,
DILLE I ()10 24y - fobustness and best tracking capability. But there is always

has a compromise with step size and misadjustment. As the

Wherepk must be choseto achiee faster convergence

and to reduce the instantaneous squared error as much
possible.
A priori knowledge ofstability and convergencef the LMS
adaptive filter algorithm requires tlmputpower level to
select the algorithm gain paramegerSince thanputpower
level is usually one of the statistiqgairameteunknowns, it
is normally estimated from the dataceived prior to
beginningthe alaptation process. ConsideMS recursion
algorithm

where stepsize parameter varies in time. It has beerSteP size increases stability decreases anit dscreases

: : ; tability increases.Jeronimo A. G has shown in his paper
observedthat the filter length and power of tteignal is S . . .
highly influenced,convergence, stability and steady state[80] that the filter weights depends on the spectra of input

behaviour of LMS algorithm. So signals and additive noise and step size. This problem is

overcome by Z.ShengkyB1] by combiring many LMS
filter with different steps. Using this methtite combination

1! !!!! D ! !! TR !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! of step size and misadjustmeprovides the better tracking
F capability for each weight to speed them up.
romabove equation to find the recursion A variable step sizeMSS) LMS algorithm introduced by
Ting Lieu and Saeed Gaz8f to assist the process of
REENEEOIR ! L) Q) conflicting requirement. The Iar'ge step size negded for fast
rrayrm convergence and small step size needed fisadjustment

factor. Then a new algorithnfor variable step size
The above equation is using a posteriori error algorithms has been designed by Leonardo R&g [as

minimization Hence, robust Variable Step SizeLMS algorithm. Ths algorithm
was based on the optimization of cost time dependent

Py () ———— oy )mm (27)  function to updatehe filter coefficient This optimizes the

reene) square of the posterior erroA theoretical model for

i predicting the transient and steastate behaviouhas given

Where!" and! are constantsStudy of thefirst andsecond 5 5 proobf almost sure filter convergence wemevided.
order behavior of Normalized Least Mean Square To improve the weaknessf lastly developedvariable
(NLMS) algorithm has been introduceg M. Tarrab and A.  gtepsize least meansquare (VSLMS) algorithm a new
Feuer[?l]. The LMS deS|g(1 was based on the statst@  \/5| MS has been proposéy JengKuangHwang B4]. The
input signal so a new desigmas presented by D. T. Slock gigorithm was gradient based and took taeerage of the
[72]. This model analysed the NLM&d LMS algorithm  \eights. The specific application found using this algorithm
for their convergence behaviour. Then S.C.Douglas and  for “colour input environment or system identification
T.H.Y. Meng [/3 proposed anonlinear LMS algorithm  nmerous variablestepsizenormalizedeast mearsquare
where statistics parameteasalysed wee based on memory (ySSNLMS) algorithmshave teen derived to solve the
less nonlinearities. , _ . crisis of fast convergence rate or low excess mean

A new NLMS algorithmwas givenby Emilio et al 4 areerrorin the past two decades. Hsuagin their paper
[74] .This new algorithmshows easy demonstrian of the g5 yroposed a new, easy to implement, nonparametric
optimum value ofadaptive constant in the LMS algorithm \,sqNLMS algorithmthat  make use of mean
This algorithm uses a value for the ada,pt_'or_] constant thap,are errorand the estimated system noise power to control
assure the fastest convergence. It also minimizes the MSE estep-sizeupdate. This section is concludedusing Table
the adaptive systems which is based on a simple Taylor()s
expansion. Author S. Kalluri [75] obtained a general
nonlinearNLMS type algoithm by choosing flawlesime  mapie 6. Revolutionary TimefFor Variants of LMS
varying step size that minimizes the next ste@an square Al gorithm
error after everyteration of thenonlinearLMS algorithm.

To control echo fom speech signals a modified LMS
algorithm has been analysed by J.Ensor and A. Lexdls [ 1986 | F. F. Yassa | NLMS introduced | [69]
The results prowk that the algorithmprovide uniform
speech band cancellation and lower misadjustment thaé‘b02
LMS algorithm & same convergence rate witdditional
mathematics.

A new method based oposterior estimation has been
defined by J. M. G—rriz [77], where error was definethéy
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2005 | Jeronimo A | Algorithm for [80] stability problems, which are not as critical in LNd&sed
convex algorithms.
combination of Concluding thissection, so many modifieéidaptive
LMS transversal filtering algorithms has beenistussed, those basically
filter advanced version ofLMS. There are two ways to
2006 | Z. Shengkui | Modified LMS [81] categorizedthem, first category keeps all those algorithm
and NLMS with having simpler algorithm with less onputational
Variable Step Size complexity andothercategory isconcern about thedaance
2012 | Hsu-Chang | VSSNLMS [85] and improved pdormance of existing algorithmThe
Huang algorithm simpler  algorithm  provides least complexity in

implementation with the increasing cost of misadjustment
and low convergence speethe advanced and improved
4.2 LMS verses RLS (Recursive Least Square) algorithms providenorecomputational complexity.
There is another side of the coin too, which deals with the
fast transversal RLS (Recursive Least Square) algorithms.
But this algorithm has stability problems in practical 5. Conclusion
implementation.
The objectives of LMS (Least mean squaresalgorithms ~ Thepresenteghaper has reviewed 50 yearsaofaptive filter,
are minimization of sum of the squares oflifference their structure, adaptive algorithm mainly Least Mean
between the desired signahd model filter output $6]. Square (LMS) and one of its variant Normalised Least Mean
Recursive leassquares (RLS) algorithms given the solution Square KLMS). Considerableemphasis habeen given to
of the problem whemew samples ofncoming signalsare ~ work reported in the development of Adaptive noise
received at each iteratior87-88]. The Recursive Least cancellation system.
Square RLS) algorithms are kown to accompanyfast _ . o
convergence even when the eigen value spread of the inpmis is an Open Access article distributed under the terms of the
signal correlation matrix is large. These algorithms havg&eaive commons Attribution Licence
excellent performance when working in timarying
environmentg89-90]. All these advantages come with the A
cost of an increased computational complexity and some
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