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Abstract 
 

In order to manage seagrass ecosystems, detailed information on seagrass condition is needed. Remote sensing could be 
used to obtain information about seagrass condition. The high resolution images in Google Earth provide methodological 
development opportunities for seagrass condition mapping. This study aimed to assess the reliability of Google Earth 
imagery as a direct source of data for mapping seagrass condition. This study combined image processing and field 
survey. The image downloaded from Google Earth was a picture file in JPEG format which came from a GeoEye1 image. 
Image classification was done using the maximum likelihood method to obtain a map indicating seafloor typology. The 
resulting classes were seagrass beds, live coral, sand and dead coral, and deep sea. The seagrass class was further 
subdivided to represent conditions based on seagrass percentage cover. Classification accuracy was assessed using an 
error matrix to calculate overall accuracy and the Kappa Coefficient. Such a mapping method need not be expensive 
because Google Earth imagery can be downloaded for free.The results of this study showed that Google Earth imagery 
can be a reliable direct source of seagrass condition mapping data with good accuracy. The resulting map can provide 
detailed information when it comes from a high-resolution image. 
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1. Introduction 
 
Seagrass beds are important ecosystems in coastal areas. 
Marine organisms use this habitat as shelter and nursery 
ground as well as for foraging and spawning. Seagrass 
contribute to the ecosystem functions and biodiversity in 
shallow water areas (Hemminga and Duarte [1]). Seagrass 
beds can be composed of one or more species growing 
together on a single substrate that is within reach of sunlight.  
 In order to manage a seagrass ecosystem, is important to 
obtain detailed information on seagrass diversity and 
abundance. Insufficiently detailed information could end up 
leading to mismanagement of the area.  
 Remote sensing can be used to obtain information about 
the condition of seagrass beds in shallow coastal ecosystems 
with clear water, due to good light penetration and easily 
accessible field data (Green et al. [2]). Moreover, in some 
situations remote sensing has been shown to be more cost-
effective than field survey data collection and should be 
considered as an integral approach along with field data for 
monitoring seagrass communities. Mapping seagrasses via 
remote sensing can produce a more spatially comprehensive 
and inclusive representation of spatial distribution than point 
or transect based surveys (Lyons et al. [3]). Detailed 
mapping of seagrass condition requires remote sensing 
images with high spatial resolution, such as IKONOS, 
Quickbird, GeoEye-1 and WorldView-2.  
 The use of remote sensing imagery for mapping the 
seagrass condition has been carried out in Moreton Bay, 
Australia using Landsat 5-TM data (Roelfsema et al. [4]), 
and using a combination of Quickbird imagery and field data 

(Lyons et al. [3]). Quickbird imagery has been used also to 
map seagrass condition in the waters around Barranglompo 
Island and Barrangcadddi Island, Makassar, Indonesia 
(Amran [5]). Wicaksono and Hafitz [6] used ALOS AVNIR-
2 and ASTER images to map leaf-area index (LAI) of 
seagrass in the Karimun Islands, Indonesia. 
 Google Earth was launched in 2005 as an internet-based 
computer service, which displays 3-4 year old satellite 
images of the entire surface of the earth with moderate 
resolution (30 m). Recently, Google Earth, supported by 
Digital Globe, has begun to display images with very high 
resolution that allow users to easily identify specific objects 
in natural or human built environments (Farah and Algarni 
[7]). Maps generated from Google Earth imagery have a 
high accuracy (Collin et al. [8]). Google Earth has many 
tools that allow users to obtain spatial data and even to add 
specific information to the image displayed, such as special 
notes and photographs (Potere [9], Farah and Algarni [7]). 
 Google Earth images can be downloaded for free as an 
image file. Displayed images have passed through several 
treatment processes, such as contrast stretching and 
sharpening. Even though the images provide by Google 
Earth are in natural colour, they can be decomposed into 
their colour components of red, green and blue (RGB).  
 In a clear water, substrate types such as sand, coral reefs, 
and seagrass beds are well portrayed on Google Earth 
images. West [10] used Google Earth images to detect the 
impact of boat activity on the seagrass Possidonia in 
Australia, while Collin et al. [8] used Google Earth imagery 
to map the seafloor substrate typology in Shiraho, Ishigaki 
Island of Japan, and generated maps with 89.7% accuracy 
using a maximum likelihood classification method. 
 The high resolution imagery in Google Earth offers 
opportunities for development in the methods used to map 
seagrass condition. With the goal of serving as many people 
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as possible involved in coastal resources management, an 
easy-to-implement and transparent method should be built so 
that any person equipped with a computer, and internet 
access could make a detailed map of seagrass condition. 
This study aims to assess the reliability of Google Earth 
imagery as direct source of data for the mapping of seagrass 
condition.  
 
 

2. Materials and Methods 
 
This study combined image processing and field survey. The 
study area comprised the seas around Barranglompo Island 
(ca. 15 km from the mainland of Makassar), which is one of 
the small islands in the Spermonde archipelago (Fig. 1). 
Seagrass beds spread out extensively across the gently 
sloping intertidal and reef flat area at depths of 0.5 – 1.5 
meters. Various seagrass cover categories were observed in 
this area.  

 

 
Fig. 1. Barranglompo Island study site 
 
 
 The Google Earth image used in this study was a natural 
colour image (RGB).  The acquisition date could be 
specified using the historical imagery button included in the 
Google Earth toolbar (Fig. 2). Embedded at the bottom of 
the image is the company name of the source sensor (here, 
DigitalGlobe) following “Image © year”. DigitalGlobe 
provides high resolution multispectral satellite images 
(IKONOS, QuickBird, GeoEye-1, WorldView-2 and 
WorldView-3).  
 A field survey was conducted to identify the species, 
referring to Waycott et al. [11], as well as taking 
photographs (Nikon camera, type Coolpix S32) of the 
seagrasses that were observed in the transects. The 
coordinates of quadrats were also recorded (Garmin 
GPSmap 76CSx).  Seagrass species identification was based 
on the shape of leaves, rhizomes, flowers and fruit. The data 
collected from the field survey were divided into two 
independent clusters: the training cluster, which was used to 
define the class-specific pixel signatures required for 
classification, and the validation cluster, which was used to 
assess the accuracy of the image classification result. 
 

 
Fig. 2. Google Earth image screenshot of Barranglompo Island 
 
 
2.1 Station location 
Ground truthing stations were selected based on the seagrass 
percentage cover that was detected from the Google Earth 
image, which displayed different colours, hues and patterns. 
At each station, a transect line was set perpendicular to the 
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coast, starting from the landward margin of the area where 
seagrasses were present to a point on the reef-slope (Fig. 1). 
Measurement points along the transect line were in the form 
of quadrats (0.5 m x 0.5 m). Distance between quadrats was 
+ 20 meters. Each quadrat was placed in a position 
representing homogeneous seagrass cover within a radius of 
3 meters so that each plot could represent at least 4 pixels in 
the high resolution image.  
 
2.2 Determination of seagrass percentage cover and 
condition 
The seagrass percentage cover was measured by classifying 
quadrat photos using image processing software (ENVI 5.1) 
with maximum likelihood method. The objects within each 

quadrat were classified into seagrass and substrate (e.g. Fig. 
3). Seagrass percentage cover was defined as the proportion 
of substrate covered by seagrass vegetation within a unit 
area when observed perpendicularly from above (Brower et 
al. [12]). Seagrass percentage cover (C), was calculated as: 
 

  
C = α

A
x100%        (1) 

 
 Where a is an area covered by seagrass in quadrat, and A 
is a quadrat area. Seagrass condition was determined based 
on the criterion of seagrass percentage cover as shown in 
Tab. 1. 

 

 
Fig. 3. Photograph and classified image of plot 702 (station 7, plot 02) 
 
Table 1. Seagrass condition criterion based on seagrass 
percentage cover 

Coverage Assigned Condition 
> 75 % Very good 

50 – 75 % Good 
25 – 50 % Moderate  

< 25 % Poor 
 
 
2.3 Image processing 
The image downloaded from Google Earth was a picture file 
in JPEG format without geographical coordinates, so that 
registration was necessary to produce a georeferenced 
image. The method used for image registration was first 
degree polynomial warping with nearest neighbour 
resampling based on ground control points (GCP) (Richards 
[13]). 
 Image masking was done to cover the land and boats in 
the image, so that the image processing was limited to areas 
where the substrate was underwater. This step was done by 
creating a binary image, giving a value of 1 to pixels under 
water, while land and boat pixels were given the value of 0. 
The binary image was applied to the Google Earth image so 
that the pixel value of land and boats were not processed in 
subsequent image processing. 
 Image classification was done using the maximum 
likelihood method to obtain a map indicating the different 
substrate types present. Training areas were used, comprised 
of pixels that corresponded to the field samples. The 

resulting classes were seagrass beds, live coral, sand and 
dead coral, and deep sea. The seagrass class was subdivided 
to represent seagrass condition based on seagrass percentage 
cover in accordance with the criteria in Tab. 1. Sand and 
dead coral were combined into one class because they could 
not be distinguished in the image classification. The deep 
sea class comprised seafloor too deep to be detected by the 
satellite sensors. 
 Image classification was done based on the red, green 
and blue colour components of the Google Earth image. The 
classification process began by creating training areas, 
collecting pixel values for each colour component by 
substrate class. The sets of pixel values obtained were used 
as reference sets to group the pixels into classes. The 
maximum likelihood classification method requires 
statistical information such as the average value of each 
training area, standard deviation, variance and covariance. 
Such statistical information was automatically generated 
when creating the training area data sets. Based on this 
statistical information, the probability of each pixel to fit 
into a particular class could be calculated 
 
2.4Accuracy assessment 
An error matrix was used to perform an accuracy 
assessment. Error matrices can test the conformity between 
ground truthing data and the results of image classification. 
Overall accuracy of the classification map is the proportion 
of the total correct pixels divided by the total number of 
pixels in the error matrix (Jensen [14], Richards [13]). In 
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addition, the value of the Kappa Coefficient was also 
calculated. The Kappa Coefficient is a measure of classifier 
performance derived from the error matrix (Tab. 2). The 
Kappa Coefficient (k) was calculated as:  
 

k =
N xii − xi+ * x+i( )

i=1

k

∑
i=1

k

∑
N 2 − xi+ * x+i( )

i=1

k

∑
     (2) 

 
where: 
 
N: total number of pixels 
xii: number of correctly classified pixels  
xi+: number of marginal pixels in the row i (thematic 
map classes) 
x+i: number of marginal pixels in the column i 
(reference data classes) 
k: total number of classes   

 
Table 2. Suggested ranges for the Kappa Coefficient 
(Richards, 2013) 

k Classification can be regarded as 
< 0.4 Poor 

0.41 – 0.60 Moderate 
0.61 – 0.75 Good 
0.76 – 0.80 Excellent 

> 0.81 Almost perfect 
 
3. Results 
 
The natural colour image downloaded from Google Earth 
had an acquisition date of February 19, 2015. Based on the 
DigitalGlobe website 
(http://browse.digitalglobe.com/imagefinder) the image was 
a GeoEye1 image with 1.65 m2 resolution. Registration of 
the image was performed based on 10 GCP with RMSerror 
= 0.37. Georeferencing was performed using UTM 
coordinates, in zone 50 M and using the 1984 World 
Geodetic System (WGS84) datum.  
 Field surveys were conducted on 6 to 8 July 2015 to 
identify the seagrass species and photograph the quadrats. 
There were no natural phenomena or human activity that 
was considered likely to result in significant changes in 
seagrass condition during the time interval between image 
acquisition and field measurements; hence it was assumed 
that the image represented the seagrass condition as 
measured in the field. Each seagrass condition class (Tab. 1) 
was represented by 104 field samples (quadrats), consisting 
of 44 plots in the training cluster and 60 plots in the 
validation cluster (Tab. 3).  
 
Table 3. Field samples (quadrats) 

Class Training cluster Validation cluster 
Seagrass 30 40 
Live coral 7 10 
Sand and dead 
coral 7 10 

Total 44 60 
 
 There were eight species found in the study area: 
Cymodocea rotundata, Cymodocea serrulata, Enhalus 
acoroides, Halodule pinifolia, Halodule uninervis, 

Halophila ovalis, Syringodium isoetifolium and Thalassia 
hempricii. The dominant species with the highest coverage 
was Enhalus acoroides. Generally, these seagrass species 
formed mixed species meadows with two or more species. 
Species composition varied between locations (quadrats).  
 Sea waters quality and seabed substrate were suitable for 
promoting the establishment and growth of seagrasses. The 
seawater was very clear so that sunlight needed for 
photosynthesis could penetrate to the seafloor. The substrate 
consisted of sand and coral fragments with sizes varying 
from fine sand to granules.  
 Image classification results identified seagrass beds on 
the reef flat around Barranglompo Island, located to the 
north, west and south of the island (Fig. 4). Seagrass 
vegetation within the study site formed extensive meadows 
spreading out over the tidal flats. Seagrass condition varied 
but was mostly in moderate and good condition categories. 
Average pixel values of the three colour components (red, 
green and blue) for each class are presented in Fig. 5. Fig. 6 
shows the proportional area in each class based on seagrass 
condition. Compared to previous studies, the results 
indicated that seagrass percentage cover had increased. 
Amran [5] reported that the percentage of seagrass cover in 
the seas around Barranglompo Island in 2008 was mostly 
less than 50%, in the poor or moderate condition categories. 

 
Fig. 4. Map of seagrass condition of Barranglompo Island 
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Fig. 5. Average pixel values in each class 
 

 
Fig. 6. Proportion of area covered based on seagrass condition 
 
 The classification accuracy assessment showed that 
overall accuracy reached a quite high value of 85.7%, while 
the producer's accuracy and user's accuracy for each class 
exceeded 70% (Tab. 4). The Kappa Coefficient was 0.83, 
which means that the classification result could be regarded 
as almost perfect.  

 
Table 4. Accuracy assessment 

 Number of pixels of referenced data User’s 
accuracy VGS GS MS PS LC SDC SR 

N
um

be
r o

f p
ix

el
s 

of
 c

la
ss

ifi
ed

 d
at

a VGS 36 0 4 0 0 0 40 90.0 
GS 5 41 0 0 0 0 46 89.1 
MS 0 0 35 6 0 0 41 85.4 
PS 0 0 0 32 0 5 37 86.5 
LC 0 0 0 0 34 6 40 85.0 

SDC 0 0 0 5 4 32 41 78.0 
SC 41 41 39 43 38 43   

Producer’s accuracy 87.8 100 89.7 74.4 89.5 74.4   
Overall accuracy = 85.7 % 
Kappa Coefficient = 0.83 
VGS: very good seagrass class. 
GS: good seagrass class 
MS: moderate seagrass class 
PS: poor seagrass class 

LC: live coral class 
SDC: sand and dead coral class 
SR: sum of pixels in the row 
SC: sum of pixels in the column 

 
 
4. Discussion 
 
Seagrass species variation in the waters around 
Barranglompo Island was high, with 8 species, similar to the 
seagrass diversity reported by Supriadi et al. [15]. Seagrass 
species grow in a variety of combinations at this site. This 
means that the image pixel values, as a representation of the 
reflected energy received by the sensor, did not represent a 
particular species of seagrass. 
 When light penetrates water, its intensity decreases with 
increasing depth. The severity of attenuation differs with the 
wavelength of electromagnetic radiation. The spectral 
radiances recorded by a sensor are therefore dependent on 
the reflectance of substrate, optical properties and depth of 
water (Green et al. [2]). Ideally, the image should be 
corrected to account for the water column depth, but in this 
study it was not done. The Google Earth image was 
downloaded in JPEG format and had undergone contrast 
stretching and sharpening so that the pixel value could not 
be calibrated to the radiance needed for water column 
correction. In addition, seagrasses in the study site grow in 
very clear waters with a relatively similar depth so that the 
influence of the water column could be considered relatively 
uniform. 

 Average pixel values for each of the colour components 
in the seagrass classes differed from those in sand and dead 
coral class and live coral class (Fig. 5). The sand and dead 
coral class had the highest average pixel values in all colour 
components, while the live coral class had the lowest value. 
This was in line with the results of spectral reflectance 
measurements of seagrass and sand by Maffione [16] using a 
spectrometer. The spectral reflectance curve of seagrass and 
sand indicates that these substrate types can be significantly 
differentiated, and sand reflectance is always higher than 
that of seagrass in the visible light spectrum (400 – 700 nm 
wavelengths). Statistically, the Google Earth image had the 
potential to be classified based on seagrass condition, 
referring to the differences in pixel value for each class. The 
classification accuracy assessment showed good values for 
overall accuracy and the Kappa Coefficient. 
 The peak pixel values for seagrass classes were in the 
green component. This was similar to the research by Han 
[17] and Thorhaug et al. [18] who found that the peak of 
seagrass spectral reflectance was at 560 nm wavelength 
which is included in the green spectrum. The spectral 
reflectance peak was influenced by chlorophyll in seagrass 
leaves. Chlorophyll reflects electromagnetic radiation in the 
green spectrum but absorbs light at wavelengths in the blue 
and red spectra.  
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 The pixel values for the various classes of seagrass 
formed a similar pattern but that the value decreased when 
the seagrass percentage cover increased (Fig. 5). Pixel value 
represents the combined effects of exposed substrate and 
seagrass cover. Seabed radiance comes from the combined 
reflection of the abiotic substrate and other objects that grow 
or lie on the seafloor. According to the spectral reflectance 
characteristics, substrate reflectance gives a greater 
contribution to seabed radiation compared to other objects 
on the seafloor. Maffione [16]) showed that seagrass 
reflectance is 3 – 4 times smaller than that of sand, so the 
presence of seagrass will cover the substrate and denser 
seagrass coverage would reduce seabed radiance further.  
 Google Earth provides serial image data by month and 
year, so the mapping method used in this study could be 
applied for monitoring seagrass, for example, detection of 
changes in condition or extent. In addition, this mapping 

method is not expensive because the Google Earth image 
can be downloaded for free. 
 
 
5. Conclusion 
 
This study has shown that Google Earth imagery can provide 
a reliable direct source of data for mapping of seagrass 
condition with a good accuracy. The resulting map can 
illustrate detailed information because it comes from a high-
resolution image. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  
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