

Journal of Engineering Science and Technology Review 10 (1) (2017) 61- 67

Research Article

A Novel Optimization Strategy for Job Scheduling based on Double Hierarchy

Guozeng Zhao1,*, Xiang Gao1, Weidong Zheng1,2 and Zhiguo Lv3

1School of Computer Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China

 2Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
3State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China

Received 4 January 2017; Accepted 27 February 2017

Abstract

At present, the high-performance cluster system has been widely applied to multitask and multi-user data processing
procedures. However, computation loads can be influenced by the job scheduling optimization strategy (JSOS) of the
cluster system, which can cause imbalance during job scheduling process, job starvation, and resource fragmentation.
This situation can further result to problems, such as dissatisfactory resource utilization and lengthy job response,
turnover, and completion times. First, a double hierarchical job scheduling model was proposed in this study to optimize
the job scheduling strategy of the cluster system. Second, this study analyzed the hierarchical tasks in the scheduling
model and the factors, namely, resource utilization and job completion time that influence them. The reasonability of the
JSOS was also verified. Finally, the optimization strategy for job scheduling was compared with the first-come, first-
served (FCFS) and FirstFit strategies. Result shows that compared with FCFS and FirstFit strategies, the proposed job
scheduling strategy increased resource utilization by 6.3% and 0.8%, and reduced average response time by 22.05% and
1.12%, average turnover time by 9.82% and 2.01%, and completion time by 10.45% and 1.11%, respectively. Thus, the
proposed double hierarchical job scheduling strategy not only improves system resource utilization but also reduces job
response, turnover and job completion times. The experimental result is consistent with the expected requirements, and
the study provides a feasible scheme for the job scheduling optimization problem in the cluster system.

 Keywords: Cluster, Scheduling Strategy, Double Hierarchy, Optimization Strategy
 __

1. Introduction

Along with the development of computer technology and
communication technology, the high-performance cluster
system has been widely applied in large-scale data
processing. Specifically, the cluster system is oriented for
multitask and multi-user massive job and data processing.
To improve system performance and obtain the best job
scheduling effect, jobs are allocated in the queue to the
computation unit through an optimal strategy, which is based
on job characteristics. Specifically, job scheduling is one of
the core functions of the cluster system [1]. The rationality
of a job scheduling strategy directly influences quality of
service (QoS) of users and system performance [2].
Therefore, effectively optimizing the job scheduling strategy
and the computation capability of the cluster system is a
significant problem that should be urgently solved.

 Job scheduling strategy is an indispensable part of
network computation. This strategy receives a user’s job
request, ranks the job queue according to job characteristics,
selects suitable resources from the global resource pool,
allocates reasonable resources for the jobs, and monitors job
execution. Generally, the job scheduling system should
select suitable jobs for operation and suitable nodes for the
job operation, and allocate the necessary system resources.
Fortunately, along with the rapid development of computer

hardware technology and system structure, multicore
processors have been gradually developed and widely
applied to data processing. In the cluster system, multicore
and many-core processors are configured for a single
computation resource node to establish a multipath and
multicore hybrid structure with shared memory. Integrating
resource characteristics in the cluster system with
heterogeneous computation nodes, excavating the parallel
granularity of the computation nodes, balancing the job
loads of the heterogeneous resource nodes, and utilizing
cluster system performance are all significant for the job
scheduling system [3].

Accordingly, the job scheduling problem of the cluster
system was abstracted into an optimization model composed
of a job scheduling and distribution layers. The key factors
that influence job scheduling were analyzed, and job priority
was dynamically adjusted to utilize data resources
maximally. To reduce user waiting time and improve
resource utilization and system performance, resource
occupancy information was adopted to distribute the job
queues to the resource units evenly. This study aims at
finding the job scheduling optimization strategy (JSOS)
suitable for high-performance cluster system.

2. State of the Art

The unbalanced distribution of resource nodes during the job
scheduling process of the cluster system causes low system
resource utilization and lengthy job completion. Thus, job

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

E-mail address: ly_zgz@163.com
ISSN: 1791-2377 © 2017 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.

Guozeng Zhao, Xiang Gao, Weidong Zheng and Zhiguo Lv/Journal of Engineering Science and Technology Review 10 (1) (2017) 61 - 67

 62

scheduling modeling and system parameter optimization
have been conducted by several scholars to find an optimal
job scheduling strategy [4]. Job scheduling strategy is related
to the cluster system performance; an excellent job
scheduling strategy can maximally reduce system resource
competition and user cost, improve system resource
utilization, and reduce job completion time. Evidently,
finding an optimal scheduling strategy is an NP-complete
problem.

At present, the frequently used scheduling strategies in
the cluster management system mainly include first-come,
first-served (FCFS) scheduling strategy, scheduling strategy
based on priority, FirstFit strategy, and BestFit strategy.
FCFS is the most common classical scheduling strategy [5].
This strategy is aimed at scheduling jobs according to arrival
sequence. FCFS can ensure job scheduling fairness; however,
it causes several idle computation nodes, especially when a
job with large resource occupancy is ranked at the head of
the queue. The waiting time of subsequent jobs is obviously
prolonged, thus reducing system resource utilization and
throughput rate. To overcome this disadvantage, a short job
priority scheduling strategy [6] was proposed; however, this
method might delay a large job to arrive at the earliest time,
which can cause job scheduling unfairness. The FirstFit
strategy aims to evaluate jobs in the queue and then
scheduling the first job with available resources, whereas the
BestFit strategy aims to determine the job with the
maximum resource satisfaction in the present system [7].
However, these two strategies might delay the jobs with high
resource demand due to the execution of the jobs with low
resource demand, cause job starvation, or increase the
average waiting time of the jobs. The scheduling strategy
based on priority aims to execute jobs in the queue
according to the job priority defined in the system; job
fairness is considered in this method. However, when the
system fails to provide sufficient resources for jobs with
high priority, the system cannot run the job with low priority,
thus causing idle resources and job starvation [8].

Along with the development of cluster technology, the
job scheduling technology is also continuously improved to
maximize resource utilization, reduce job waiting time in the
cluster system, and gradually develop certain advanced
strategies accordingly. For example, Mehta et al. proposed a
time-delay dynamic load balancing model based on feedback
control theory [9]. The authors adopted a discrete event to
simulate a time-delay load balancing system through a
provided computation method of optimal load balancing
gain. For parallel files with large communication time delay,
they did not do an in-depth analysis of the influence of the
time-delay factors on information accuracy. Guobin Zhang
et al. researched the combination of the priority scheduling
strategy and backfilling scheduling strategy [10]. For a
queue with mainly small jobs, this strategy is a good
supplementation to the priority strategy; however, if a job
with high resource demand is ranked ahead of the queue
without any resource appointment, then the large job would
be pending for a long time, causing job starvation. Guotao
Zhang et al. comprehensively considered the present load of
a node based on traditional backfilling algorithm; they
proposed a scheduling algorithm that integrates appointment
and backfilling strategies on account of the time slot
between the job operation resource and the appointed
resource [11]. This strategy could have improved resource
utilization; however, the FCFS strategy provided by the
scheduler was adopted for the queuing algorithm during job
submission, thus, job sequencing selection function was

unavailable. Moreover, the authors adopted the FirstFit
strategy for resource scheduling; thus, although the queue
included several small jobs, the degree of job urgency could
not be distinguished well when the job ahead of the queue
was blocked [12]. Shuren Bai et al. considered the product
of CPU quantity and idle time as job submission filling
condition based on backfilling strategy [13]. To meet the
allowable requirements of the cluster system, this method
was used to reduce the CPU core number of the job while
increasing the CPU computation time when the job filling
condition exceeded the actual available condition of the
cluster system. Compared with the backfilling algorithm, the
method was an active filling scheduling algorithm; but the
author only verified the algorithm theoretically rather than
analyzed the actual job scheduling request [14]. According
to previous research, the existing job scheduling strategies
fail to consider the application characteristics
comprehensively and cause problems, such as job starvation,
resource fragmentation, and unfairness. Moreover, the
existing task distribution methods fail to analyze job
complexity or consider the influence of multithread and
multi-process execution. Thus, these methods insufficiently
utilize computation resources, causing load imbalance and
increasing overall job completion time.

Therefore, data scheduling and distributing processes
were comprehensively considered in this study. Specifically,
job priority and resource occupancy mechanism were
dynamically adjusted to ensure fairness in job scheduling.
Meanwhile, system resource occupancy information was
obtained according to feedback concept through the task
distribution mechanism. Thus, the job sequence was evenly
distributed to the resource units to maximally optimize the
job scheduling effect.

The remainder of this study is organized as follows.
Section 3 establishes the job scheduling model based on
double hierarchy for the job scheduling problems in the
cluster system. Job scheduling and task distribution
processes, as well as the evaluation indexes of job
scheduling performance, are also described in Section 3.
Section 4 verifies the effectiveness of the proposed
algorithm through the conducted experiment. Section 5
presents the conclusion of this study.

3. Methodology

3.1 Double hierarchical job scheduling model
The job scheduling model includes user, job scheduling, task
distribution, and resource node layers. Herein, the user layer
was used for submitting job requests. The user set was
assumed as (1,2,...,)iU i u= . The job submitted by user iU
was assumed as (1,2,...,)iJ i m= . The sub-task included in
each job iJ was assumed as (1,2,...,)iF i f= . The resource
node requested was assumed as (1,2,...,)iR i n= . In the
system, a user’s job was formalized into a quintuple group

, , , ,i i i i iU J F R P< > , where iP is the scheduling priority
allocated by the system to the user. The resource node layer
was used to run the data job submitted by the user and return
the corresponding result.

3.1.1 Job scheduling layer
The job scheduling layer was used to receive jobs from the
user, inquire the present idle system resources according to
the resource requirements of the user, and schedule jobs

Guozeng Zhao, Xiang Gao, Weidong Zheng and Zhiguo Lv/Journal of Engineering Science and Technology Review 10 (1) (2017) 61 - 67

 63

according to a certain scheduling strategy. According to the
analysis of job characteristics, a job was composed of a
group of independent sequences and could be divided in
parallel; thus, the dynamically adjustable job priority and the
resource occupancy mechanism were adopted to ensure
fairness. Hence, any job could not delay the execution of any
other job with higher priority. The purpose of the
appointment concept was to ensure the maximization of the
resource utilization, and preferentially allocate the idle
resources to jobs with low priority and low resource demand,
as well as reserve the corresponding resources for jobs with
high priority and high resource demand. The steps of the job
scheduling layer are described as follows.

Step 1: Rank the jobs to be scheduled from high to low
priority. Then, select the job ahead of the ranked queue and
allocate the corresponding quantity of resources needed by
this job.

Step 2: Inquire the present idle resources.

Step 3: If the idle CPU can meet the resource demand of this
job (namely, the quantity of idle CPU is greater than the
quantity of CPU needed by this job) then, allocate the idle
CPU to this job.

Step 4: If the quantity of the idle CPU of the present system
is less than the quantity of CPU needed by this job, then
judge whether the sum of the present idle CPU and the
reserved CPU can meet the resource demand of this job.

Step 5: If the reserved CPU can meet the resource demand,
then select the corresponding jump job according to the
selection strategy of the suspended job; if a suitable jump
job is available, then suspend the jump jobs with low
priority and set the appointed CPU to run the jump jobs as
idle state. Subsequently, allocate all idle CPU to the present
job waiting to be scheduled, wherein the completed parts of
the suspended jump jobs will be recorded and saved in the
system, and the job state thereof will be set as scheduling
waiting state.

Step 6: If the sum of the idle and reserved CPUs cannot
meet the resource demand, then schedule the next job
selected from the job queue waiting to be scheduled, and
repeat Step 2.

This way, the job with low priority can temporarily
occupy the resource reserved for the job with high priority
and is accordingly executed in advance. Meanwhile, the job
with high priority will not be delayed for the execution of
the job with low priority. When the idle CPU is allocated to
a job, the job will be decomposed into sub-tasks at the task
distribution layer and then the sub-tasks will be evenly
allocated with system resources.

3.1.2 Task distribution layer
At the task distribution layer, a job was reasonably divided
into sub-tasks, which were evenly allocated with the
corresponding data resources. The above process was
completed as follows: the job sequence was allocated to the
resource units; finally, the remaining part, which could not
be exactly divided by the resource units, was allocated to the
idle resource units according to the division strategy.

At the task distribution layer, resource granularity was
initially divided, and one CPU core was considered as the
basic unit of resource granularity. According to Reference

[15], in allocating the computation resource for each running
program under the multicore and multiprogram environment,
the feedback concept was adopted to obtain the resource
occupancy information of the system. Thereafter, accurate
resource occupancy could be obtained through the feedback
information mentioned. The granularity of the resource units
was divided considering the memory usage. If the threads
running on all resource units of a resource node exceeded
the physical memory capacity, the system would employ an
exchange partition to ensure that the processes were running
normally; however, such frequent data exchange with the
magnetic disk would also bring significant additional
overhead, thus greatly increasing data time. Therefore, in the
data unit division strategy, the sum of the memory occupied
by all task processes running on the resource units should
not exceed the physical memory capacity of the resource
nodes; moreover, the sum of all threads running on the
resource units should not exceed the core number of the
processors of the resource nodes.

On this basis, the job scheduling problem was modeled
as a bag-of-tasks (BoT) application model [16]. In the BoT
model, a job could be decomposed into multiple independent
tasks without data independence or communication
constraint. A loosely coupled BoT universal model included
one master and multiple slaves, wherein the master was used
for task allocation, whereas the slaves were used for
receiving tasks, executing computation operation, returning
the corresponding result to the master, and waiting for the
next task allocation.

Thus, the user submits the job to the cluster system by
uploading the job file and configuring the relevant
parameters. Then, the job submitted by the user is placed by
the management node into the scheduling queue. The node is
applied and allocates the job according to the resource
requirements of the user. The job is divided into independent
tasks to be distributed to the resource nodes for parallel
processing according to a certain strategy. After receiving
the distributed tasks, the engine running on the node starts
task execution. After task completion, successful processing
information is returned by the resource node to the
management node and finally to the terminal user.

3.2 Performance evaluation index
To better evaluate and quantify the performance of the job
scheduling strategy, the performance evaluation indexes
were defined in Reference [17].

3.2.1 Definition 1
Resource utilization, namely CPU utilization, represents the
busy-idle degree of system resources and includes real-time
and average resource utilizations. Herein, the real-time
resource utilization of the system is assumed as rP , and the
average resource utilization within a time interval of T is
assumed as _r TP . Specifically, the real-time resource
utilization can be expressed as follows:

b
r
NP
N

= (1)

where bN represents the quantity of running CPU, and N
represents the quantity of all CPUs in the system.

The average resource utilization from aT to bT can be
expressed as follows:

Guozeng Zhao, Xiang Gao, Weidong Zheng and Zhiguo Lv/Journal of Engineering Science and Technology Review 10 (1) (2017) 61 - 67

 64

_
1 ()

b

a

T

r T r
a b T

P P t dt
T T

=
− ∫ (2)

When n→∞ is true, the usage time is divided into m

areas, and the average resource utilization can be expressed
as follows:

_ 0 1

1 lim
m

a b
r T rt i

T TP P i
m mΔ →

=

−⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

∑ (3)

Accordingly, the average value of the real-time resource

utilization was adopted to represent the resource utilization
approximately within a certain period.

3.2.2 Definition 2
Job response time or job waiting time, is defined as the job’s
duration from the initial time to the first start time.
 The initial time of a certain job iJ is assumed as ()TJI i ;
the start time is assumed as (,)TJS i k ; and the end time is
assumed as (,)TJF i k ,where k represents the quantity of
CPU needed. Additionally, (,)TJres i k represents the
response time of job iJ occupying k CPU resources, and

_ ()TJave res n denotes the average response time of n jobs.
Therefore, the following results can be obtained:

(,) (,) (,)TJave i k TJS i k TJI i k= − (4)

1

1_ () _ ()
n

i
TJave res n TJave res i

n =

= ∑ (5)

3.2.3 Definition 3
Job turnover time refers to the duration between the initial
and completion times, and includes execution and response
times.

(,)TJturn i k is assumed as the completion time of job iJ
occupying k CPU resources, and _ ()TJave turn n is
assumed as the average turnover time of n jobs. Thus, the
following results can be obtained:

(,) (,) (,)TJturn i k TJF i k TJI i k= − (6)

() ()1 n

i=1
TJave_turn n = TJturn i

n∑
 (7)

3.2.4 Definition 4
Overall job completion time refers to that of all jobs in the
job queue. Overall job completion time ()TAJF n of all n
jobs in the job queue can be expressed as follows:

() MAX((,)) MIN(())TAJF n TJF i k TJI i= − (8)
 To utilize the multi-core computation resources fully and
improve system rendering efficiency and throughput rate,
the multi-data job submitted by the user was divided into
multiple sub-tasks. Each sub-task corresponded to a data
process for independent operation. The sub-tasks were
independent of each other and no communication overhead
was needed among multiple sub-task processes, so the
additional time overhead was generated by processor
switching, IO competition and memory wall during multi-
process execution on the same server. As a result, the

relationship between the time and the process count could be
modeled as follows:

1 st io m
pt
T T T TT

p
+ + +

= (9)

where ptT represents the job completion time of the

processes of concurrent p t-threads, sT is the switching
overhead of the processers, ioT denotes IO overhead, mT
represents the magnetic disk switching overhead under
memory insufficiency, and ltT is the job completion time of
one t-thread. Specifically, the corresponding model is as
follows:

1 (1 /)t oT P P t T= − + (10)

where oT represents the completion time of a process of a
single thread, and P is the proportion of the parallel part.

4. Result Analysis and Discussion

4.1 Experimental environment
In this study, a Lenovo System x3950 X6 high-performance
server of the network experiment center of the Luoyang
Institute of Science and Technology was adopted as the
experiment equipment. The system configuration was as
follows: Intel Xeon E7 processor and dominant frequency of
2.4 GHz. Gigabit internet was adopted for the nodes. To
evaluate the performance of the scheduling strategy
proposed in this study, the representative test case used by
Patoli et al. in Reference [18] was adopted to verify the
effectiveness of the proposed strategy experimentally.

The proposed strategy has a dynamically adjustable
priority, so the job priority of the test case is correspondingly
divided into three types of priorities, namely jobs with high,
medium, and low priorities. Different jobs have different
resource demands, which are defined as follows: a job
needing 7 or more CPU resources with high resource
demand; a job needing 3 or less CPU resources with low
resource demand; other jobs have medium resource demand.
In order to test the performance of the job scheduling
strategy proposed in this paper, a test case which includes
200 jobs is adopted in this paper, where each group of jobs
has different priorities and resource demand proportions.
Table 1 shows a total of six groups of jobs.

Table 1. Job Test Set
No. Priorities Demands

High Medium Low High Medium Low
Js1 30% 30% 40% 40% 30% 30%
Js2 30% 30% 40% 30% 50% 20%
Js3 30% 40% 30% 40% 30% 30%
Js4 30% 40% 30% 30% 50% 20%
Js5 40% 30% 30% 40% 30% 30%
Js6 40% 30% 30% 30% 50% 20%

Multiple groups of experiments were designed in this
study to verify the double hierarchical job scheduling
strategy. The six groups of data jobs presented in Table 1
were submitted to the data management platform upon
completing the previous group of jobs. During job operation,
FCFS and FirstFit strategies, and the proposed JSOS were
adopted for algorithm performance comparison. Meanwhile,

Guozeng Zhao, Xiang Gao, Weidong Zheng and Zhiguo Lv/Journal of Engineering Science and Technology Review 10 (1) (2017) 61 - 67

 65

multi-user jobs were adopted to test the effectiveness of the
double hierarchical job scheduling strategy.

4.2 Experimental result and analysis
The JSOS based on double hierarchy, FCFS and FirstFit
strategies were compared with each other in resource
utilization, job turnover time, overall job completion and
average response time.

4.2.1 Comparison of resource utilization
First, resource utilization was tested, wherein each group of
jobs had different priorities and resource demand
proportions. According to the resource utilization index in
Formula (3), Fig.1 shows the average resource utilizations of
the FCFS and FirstFit scheduling strategies and the proposed
JSOS during job set scheduling.

50
55
60
65
70
75
80
85
90
95

100

Js1 Js2 Js3 Js4 Js5 Js6

R
es

ou
rc

e
ut

ili
za

tio
n/

%

FCFS FirstFit JSOS

Fig.1. Comparison of Resource Utilizations

As shown in Fig.1, the proposed strategy has better
performance and higher resource utilization compared with
the other two strategies. According to data comparison, the
proposed double hierarchical JSOS has increased resource
utilization by 6.3% and 0.8% on average, compared with the
FCFS and FirstFit scheduling strategies, respectively. Along
with the increase of the job resource demand and the
proportion of jobs with high priority, the proposed strategy
could obtain higher resource utilization for the following
reasons: (1) FCFS scheduling strategy aims to schedule the
jobs according to job arrival sequence without considering
the job resource demand, thereby blocking the jobs with
high resource demand due to resource insufficiency and
causing resource waste; and (2) FirstFit scheduling strategy
aims to execute the jobs with low resource demand in the job
set with the same priority, thus probably making the jobs
with low priority and low resource demand unable to occupy
fully the resource interspace brought by resource allocation
and causing a small amount of idle data resources.
Essentially, job priority and job resource demand were
comprehensively considered in the proposed strategy. In the
case of insufficient resource for the job with high priority
and high resource demand, the system would initially
schedule one or more data jobs with low priority and
satisfactory resource demand according to the scheduling
strategy. Meanwhile, the advanced scheduling operation of
these jobs with low priority would not delay the execution of
the jobs with high priority and high resource demand to
ensure fairness. This way, the idle resources generated by
resource blockage could be comprehensively utilized to
improve the overall resource utilization of the system.

4.2.2 Comparison of average response time

According to the average job response time index in
Formula (5), Fig.2 shows a comparison of the average job
response times of the proposed JSOS, and FCFS and FirstFit
scheduling strategies. According to quantitative computation,
the proposed JSOS reduced the average job response time by
22.05% and 1.12% compared with the FCFS and FirstFit
scheduling strategies, respectively.

0

100

200

300

400

500

600

Js1 Js2 Js3 Js4 Js5 Js6

Ti
m
e/
m

FCFS FirstFit JSOS

Fig.2. Comparison of Average Response Times

Compared with traditional FCFS and FirstFit scheduling
strategies, the proposed JSOS has a shorter response time.
Job priority and job resource demand were considered for
the test job set in this study. However, in the job scheduling
process of the FCFS strategy, the job set might cause job
starvation due to insufficient system resources, and the idle
resource generated may increase the job completion time, as
well as the response time of the unscheduled job with low
priority. Moreover, in the FCFS strategy, the jobs were
scheduled according to their arrival sequence. A job with
high priority arriving at an earlier time might be delayed to
wait for system resources, but the job with low priority
might also have an increased response time due to the
abovementioned delay. Compared with the FirstFit strategy,
the proposed strategy could fully utilize system resources to
reduce job completion and response times of subsequent
jobs to be scheduled. Thus, the proposed strategy had a
shorter average response time.

4.2.3 Comparison of turnover time
According to the average job turnover time index in Formula
(7), Fig.3 shows the comparison of the three strategies in
their average job turnover times. According to quantitative
computation, the proposed JSOS reduced the average job
turnover time by 9.82% and 2.01% compared with the FCFS
and FirstFit scheduling strategies, respectively.

For the general comparison in average turnover time, the
FCFS job scheduling strategy was adopted for different data
jobs; however, the difference between the priority
proportions and resource demand proportions of different
job sets was not considered in this strategy. Thus, the
resources might not be fully utilized due to job starvation
and resource fragmentation, and the jobs might wait for a
long time before being scheduled due to resource blockage,
thereby increasing the turnover time of most jobs. For the
FirstFit job scheduling strategy, system resource matching
was considered as the scheduling principle to avoid the
resource blockage caused by system resource insufficiency;
however, idle resources might be generated in the resource
matching process. Thus, the resource interspace could not be
fully utilized. Nevertheless, the proposed JSOS not only
avoided the idle waiting state of the idle resources caused by
the blockage of the jobs with high priority and high resource

Guozeng Zhao, Xiang Gao, Weidong Zheng and Zhiguo Lv/Journal of Engineering Science and Technology Review 10 (1) (2017) 61 - 67

 66

demand, but also adopted the jobs with low priority and high
idle resource matching degree to “fill” the idle resources.
This way, resource utilization was improved, and each job
could be operated in advance, thereby preventing them from
entering the scheduling waiting state for jobs with low
priority. Evidently, jobs with low priority and scheduled in
advance would actively release the data resources when the
system resources were available for jobs with high priority.
This strategy also conformed to the fairness principle. Such
an advanced jump execution mode could reduce the average
job turnover time.

200

300

400

500

600

700

800

Js1 Js2 Js3 Js4 Js5 Js6

T
im
e/
m

FCFS FirstFit JSOS

Fig.3. Comparison of Average Turnover Times

4.2.4 Comparison of overall job completion time
According to the overall job completion time index in
Formula (8), Fig.4 shows the comparison of the three
strategies in the overall job completion time. According to
the quantitative computation, the proposed JSOS reduced
average job turnover time by 10.45% and 1.11% compared
with the FCFS and FirstFit scheduling strategies,
respectively.

500
1000
1500

F…

J
s
1600

700

800

900

1000

1100

1200

Js1 Js2 Js3 Js4 Js5 Js6

T
im
e/
m

FCFS FirstFit JSOS

Fig.4. Comparison of Overall Job Completion Times

Overall job completion time is one of the key indexes
considered by the users for the performance of the data
management system. Traditional FCFS job scheduling
strategy could ensure absolute fairness; however, it failed to
comprehensively consider the improvement of the system
performance. Compared with FCFS strategy, FirstFit
scheduling strategy could increase system throughput by
readjusting the scheduling sequence of the job scheduling
queue; however, it failed to consider fairness
comprehensively. Nevertheless, the proposed JSOS was
based on job priority, and such absolute fairness was

disrupted only due to job blockage to make the job with high
priority and high resource demand temporarily enter the
waiting state while scheduling the job with low priority and
low resource demand in advance. Specifically, the proposed
scheduling strategy was designed from the perspective of
system performance to accelerate the job scheduling process,
reduce idle time of resources, and fully utilize the present
idle system resources.

For the multi-job case, six groups of job test sets with
different priority proportions and resource demands were
adopted to compare the proposed algorithm with existing
FCFS and FirstFit scheduling algorithms. The double
hierarchical JSOS not only improved system resource
utilization but also reduced job response, job turnover, and
job completion times.

5. Conclusions

To solve low resource utilization and lengthy job turnover
time in the cluster system, the job scheduling process and the
system task distribution of the cluster system were initially
analyzed in this system. Then, the scheduling algorithm
based on the dynamic adjustment of job priority and
occupancy mechanism was adopted to describe the influence
of job characteristics on system resource utilization.
Subsequently, to establish the job allocation model, a
feedback concept based on the basic job distribution strategy
was combined to obtain resource occupancy information.
Finally, the following conclusions were obtained:

(1) The dynamically adjustable job priority not only
reduces average job waiting time but also ensures job
scheduling fairness.

(2) Resources can be reserved for jobs with high priority
and high resource demand by allowing the job with low
priority and low resource demand to be scheduled in
advance, thus avoiding job starvation and resource
fragmentation.

(3) Division based on a single CPU core as the resource
granularity unit, and the application of the resource
occupancy information and resource distribution strategy not
only balances resource loads but also improves resource
utilization.

In conclusion, the proposed double hierarchical job

scheduling model can improve system resource utilization
and QoS for the users, thereby providing a feasible solution
for the job scheduling optimization problem in the cluster
system. However, in an actual cluster system, system
resources have significantly different performance due to the
continuous upgrade of the hardware resources of the server.
Such performance difference may influence job completion
time and resource utilization. Therefore, in the future, we
should focus on evaluating resource performance reasonably,
and guiding high-efficiency job scheduling process
according to system performance and job loads.

This is an Open Access article distributed under the terms of the
Creative Commons Attribution Licence

Guozeng Zhao, Xiang Gao, Weidong Zheng and Zhiguo Lv/Journal of Engineering Science and Technology Review 10 (1) (2017) 61 - 67

 67

References

1. Lee, Y. C., Zomaya, A. Y., “Energy Conscious Scheduling for

Distributed Computing Systems under Different Operating
Conditions”. IEEE Transactions on Parallel and Distributed Systems,
22(8), 2011, pp. 1374-1381.

2. Mezmaz, M., Melab, N., Kessaci, Y., et al., “A parallel bi-objective
hybrid metaheuristic for energy-aware scheduling for cloud
computing systems”. Journal of Parallel and Distributed Computing ,
71(11), 2011, pp.1497-1508.

3. Quezada-Pina, Ariel., Tchernykh, A., González-García, J. L., et al.,
“Adaptive parallel job scheduling with resource admissible allocation
on two-level hierarchical grids”. Future Generation Computer
Systems , 28(7), 2012, pp.965-976.

4. Zhou, Q., Liu, R., “Strategy optimization of resource scheduling
based on cluster rendering”. Cluster Computing, 19(4), 2016, pp.1-9.

5. Xu, X., Cao, L., Wang, X., “Adaptive Task Scheduling Strategy
Based on Dynamic Workload Adjustment for Heterogeneous Hadoop
Clusters”. IEEE Systems Journal , 10(2), 2014, pp.471-482.

6. Tamm, G., Krüger, J., “Hybrid Rendering with Scheduling under
Uncertainty”. IEEE Transactions on Visualization and Computer
Graphics, 20(5), 2014, pp. 767-780.

7. Torkestani, J. A., “A new approach to the job scheduling problem in
computational grids”. Cluster Computing, 15(3), 2012, pp.201-210.

8. Ghanbari, S., Othman, M., “A Priority Based Job Scheduling
Algorithm in Cloud Computing”. Procedia Engineering, 50(9), 2012,
pp.778–785.

9. Mehta, M., Jinwala, D., “A Hybrid Dynamic Load Balancing
Algorithm for Distributed Systems”. Journal of Computers, 9(8),
2014, pp.1825-1833.

10. Zhang, G. B., Pan, J. G., “Design and Analysis of Prority-based
Preemtiv Parallel Scheduling Algorithm”. Computer Science, 34(7),
2007, pp.279-281.

11. Zhang, G. T., Zhao, J. Y., Bai, Z. Y., “Cluster Job-scheduling
System Based on LT-backfilling Algorithm”. Computer Engineering,
33(21), 2007, pp.69-71.

12. Qureshi, K. Majeed, B., Kazmi, J. H., et al., “Task partitioning,
scheduling and load balancing strategy for mixed nature of tasks”.
The Journal of Supercomputing, 59(3), 2012, pp.1348-1359.

13. Bai, S. R., Yun-Hong, F. U., “An Algorithm for BACKFILL-Based
"Take Ten into Five" Parallel Job Scheduling”. Journal of Hunan
University (Natural Sciences), 34(1), 2007, pp.81-84.

14. Chandio, A. A., Bilal, K., Tziritas, N., et al., “A comparative study
on resource allocation and energy efficient job scheduling strategies
in large-scale parallel computing systems”. Cluster Computing, 17(4),
2014, pp.1349-1367.

15. Maggio, M., Hoffmann, H., Agarwal, A., et al., “Control-theoretical
cpu allocation: Design and implementation with feedback control”.
Proceedings the 6th International Workshop on Feedback Control
Implementation and Design in Computing Systems and Networks,
Karlsruhe, Germany: ACM, 2011, pp.81-130.

16. Bertin, R., Hunold, S., Legrand, A., et al., “Fair scheduling of bag-
of-tasks applications using distributed Lagrangian optimization”.
Journal of Parallel and Distributed Computing, 74(1), 2014, pp.
1914-1929.

17. Hsu, W. H., Wang, C. F., Ma, K. L., et al., “A Job Scheduling
Design for Visualization Services Using GPU Clusters”. 2012 IEEE
International Conference on Cluster Computing, Beijing, China:
IEEE, 2012, pp. 523-533.

18. Patoli, M. Z., Gkion, M., AI-Barakati, A., et al., “An open source
Grid based render farm for Blender 3D”. 2009 IEEE/PES Power
Systems Conference and Exposition, Seattle, WA, USA: IEEE, 2009,
pp.1-6.

