

Journal of Engineering Science and Technology Review
Special Issue on Telecommunications, Informatics, Energy and Management 2019

Conference Article

Scaling and Automation in Cloud Deployments of Enterprise Applications

Strahil Sokolov, Orhan Idiriz, Mihail Vukadinoff and Stefan Vlaev

Department of information Technology, University of Telecommunications and Post, 1 Acad. St. Mladenov Str., 1700 Sofia, Bulgaria

Received 30 September 2019; Accepted 21 February 2020

Abstract

An approach is proposed for utilizing modern tools and algorithms for scaling and automation of cloud deployments of
Enterprise Applications. Modern cloud based solutions for the enterprises have become even more popular than
traditional infrastructure deployments. A great number of open-source and commercial automation and scaling solutions
are available. There are challenges in terms of performance, ease of use and sustainability of automated application
provisioning in the cloud. In previous research we presented targeted criteria for choosing a suitable provider of cloud
storage and solution for scaling cloud-based solutions with thousands of users. Our goal is to establish a set of criteria
when choosing a suitable scaling and automation approach for enterprise applications.

 Keywords: cloud deployment; automation, auto-scaling.
 __

1. Introduction

Cloud application deployments increase the need for
performance efficiency and security. They are the most
active research fields among the worldwide cloud
community. These terms already are regarded together in the
QoS for cloud providers [1, 2]. Furthermore, these terms are
due to the latest trend in the IT industry: “transformation”. It
requires business to change the model of how they develop
new applications, how they deploy them, how they support
them and even how they store the end user data. Faster
access to the information becomes crucial in the era of cloud
computing and fast mobile networks.
 Scalability and performance seem to be the most
attractive features of the modern cloud infrastructure of the
popular providers. Solutions for deployment on cloud
infrastructure should be able to scale and be open for
optimization.
 Various methodologies exist for scaling cloud
application deployments based on performance estimation
via network measurements such as network latency. In our
current work we propose criteria for designing scalable
environments for cloud deployments of enterprise
applications.
 The survey [3] describes in accurate manner the layers of
the centralized cloud computing model with the following
general layers:

• Layer (I) Centralized cloud computing layer:
contains the provider cloud datacenters. This layer is
used for long-term storage and application-level data
processing operations that are typically less time-

sensitive. Applications in this layer may have
different, service modules, each one with a different
purpose for high-level data processing according to
users’ requirements.

• Layer (II) SDN/NFV technologies layer: Software-
Defined Networking (SDN) and Network Functions
Virtualization (NFV) are contemporary trends for
creating innovative network service from design to
implementation and operations. They support data
transition between edge nodes and cloud datacenters.

• Layer (III) Edge computing layer: The edge
computing layer represents gateways and data
collection services acting on raw data-aggregating,
filtering, encrypting and encoding the local data
streams online. This layer is where the cloud
resources are being distributed and moved near to the
end-users and end-devices. Edge computing has
often been called ubiquitous computing as well. This
layer can help reduce traffic from the core network
and datacenters.

 The rest of the paper is organized as follows: In section 2
features of the cloud are described for choosing performance
metrics. In section 3 the scaling criteria are described.
Section 4 gives experimental results.

2. Material and method

2.1 Concept for scalable enterprise applications in the
cloud
The concept [4] of the cloud is that it is designed to provide
conceptually infinite scalability. One can leverage and
benefit from the cloud architecture only when the
application architecture is scalable. Therefore, monolithic

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

*E-mail address: 1strahil.sokolov@gmail.com
ISSN: 1791-2377 Ó 2020 School of Science, IHU.
All rights reserved.

Strahil Sokolov, Orhan Idiriz, Mihail Vukadinoff, Stefan Vlaev /Journal of Engineering Science and Technology Review SI (2020) 103-106

 104

components and bottlenecks in the existing architecture have
to be detected; areas where the on-demand provisioning
capabilities in the architecture cannot be leveraged have to
be identified; the application has to be refactored in order to
leverage the scalable infrastructure and take advantage of the
cloud. Building scalable applications is presented in terms of
the most significant features of a scalable application:

- Resource increase would result in a proportional increase
of performance
- Scalable services are capable of handling heterogeneity
- Scalable services are operationally efficient
- Scalable services are resilient
- Scalable services should become more cost effective with
their growth (Cost per unit is reduced as the number of units
increases).

2.2 Monitoring contexts and performance metrics
This section describes the objects from the different layers of
the centralized cloud model and the respective metrics.

• VM-level metrics

 Scaling the enterprise cloud application can be done
through analyzing the utilization of the VM resources –
CPU, Memory, Disk. If the CPU utilization nears 100% and
the CPU run queues are close to becoming full, the system
runs out of available processing capacity - action must be
taken to adapt to the new challenge – or, preferably, before
that point, in predictive analysis. Memory usage shows the
percentage of memory that is used on the selected machine.
If the memory consumption is too high, again adaptation has
to take place. Disk usage has to do with the amount of data
read or written by a particular VM. Disk usage is also an
indication of the percentage of used drive space. Allocating
more storage to the VM and allocating it to the appropriate
storage area can resolve disk space issues on many
occasions. Network usage represents the traffic volume on a
particular VM interface, including external and internal data
traffic.

2.3 Scaling enterprise applications in the cloud
On Fig 1. the general workflow of the scaling approach is
presented. The performance metrics are gathered from the
respective application instances. The scaling thresholds are
adapted based on the customer requests according to (2).
The performance is evaluated based on the adapted
thresholds, then Scaling is executed to provide more instance
and improve performance or to reduce the number of
instances automatically. If there is no need for scaling of the
environment, the current state is kept.
 An example [2] is provided from a conducted
performance estimation and tuning of a relatively large
automated Amazon Web Services (AWS) environment. This
environment hosts the server side of a researched mobile
application for a e-learning provider that has video-
streaming instructor-lead trainings and provides means to
students for voting on questions during an online training.
With major lecture and quiz being held only once per week,
it’s would fit the use case for a cloud on-demand
environment, that is only being deployed for the training,
and all virtual machines being shutdown or destroyed at the
end. This helps cut costs to a minimum, and eliminating the
usage of a private data center for the purpose. The load
comes from the large set of online users responding to

certain challenge within a limited interval. Such scenario is
usually a challenge to any online system.

Fig. 1. Worfklow of the proposed scaling and automation

 By using Chef functionality and AWS OpsWorks the
online learning virtual landcape is deployed within minutes,
shortly before the event. Advanced automation is used to
make the environment scalable with the number of virtual
machines being adjusted based on the expected number of
requests. 15 instances of HAProxy are available in advance,
30 instances of web servers running applications based on
Django. In addition, there are 12 cache servers based on
Memcached which are also using AWS Aurora and
DynamoDB for data storage and also ElasticCache service
of Amazon Web Services with Redis. There are certain
capabilities that can be carried out asynchronously and for
this RabbitMQ and Celery is being used. Media files and
static content are stored on the Amazon S3. A set of tools
has been evaluated for operating and automating the
deployment of the infrastructure. Below the environment
components (as shown on Fig. 2) and the evaluated tools in
this research are given in more detail.

A. HAProxy
HAProxy - a free and open source software which is able to
provide high availability load balancer and proxy server for
TCP and HTTP-based applications. It is able to scatter
requests across multiple backend servers, it is written in C
and is famous for being fast and efficient.

B. Django
Django - a free, open-source web framework, written in
Python, which follows the model-view-template
architectural pattern. The Django Software Foundation is an
independent organization established as a 501 non-profit and
provides support and development for this framework.

C. Puppet
Puppet [5] is an open source server automation tool that
helps automate the configuration and management of the IT
infrastructure with modern. Puppet is configured within an
agent-master architectural platform, where a master node
would hold all configuration information for a multitude of
managed configuration items (nodes) running an agent. Its
main features include fast resource discovery; easy provision
of new nodes in cloud, hybrid or physical environments;
configuration of setup ranges; orchestrating changes and
events across clusters of nodes.

D. Chef
Chef [6] is a powerful automation tool and infrastructure as
a code language. It operates within a client-server scheme.
An agent is called Chef Client and runs on each managed

Strahil Sokolov, Orhan Idiriz, Mihail Vukadinoff, Stefan Vlaev /Journal of Engineering Science and Technology Review SI (2020) 103-106

 105

node. It connects to a Chef Server in periodically connecting
to a Chef Server to download and evaluate configuration
code, known as recipes. If no changes are necessary, there
would be no modifications to the system.

E. Ansible
Red Hat® Ansible® [7] is an IT automation tool that
transforms repetitive, inefficient tasks of software release
cycles into predictable, scalable, and simple processes.
Ansible by Red Hat is able to provide automation for
configuration management, application deployment, cloud
provisioning and service orchestration.

F. Terraform
HashiCorp Terraform [8] is an automation framework that is
oriented towards creating, changing and improving IT
infrastructure. It is free and open source and transforms APIs
into configuration files that can be shared amongst team
members, treated as code, edited, reviewed, and versioned.
It allows reusing infrastructure design and deployment on
various cloud providers.

Fig. 2. Environment architecture

Chef configuration management is used for the dynamic
evaluatoin of the backend limits:

 (1)

 Increasing the number of HAProxy loadbalancer
instances becomes a drawback: this is due to the fact that
maximum connections per backend are being reduced. The
scaling algorithm would assume that if the connections are
properly balanced, then the total of all backend limits from
the HAProxy instances will increase. Due to the uneven
AWS DNS RR the environment can handle a single
HAProxy instance at a time. The risk is that that the backend
limit per load balancer could be hit.
 Load tests were conducted a different type of record was
used: a single A record holds all the destination IPs and then
the client would select one and connect to it. This behaviour
was not reproduced during the tests. According to AWS
documentation there is a limitation for up to 8 IPs per A-
Record.

2.3.1 Adapting the scaling threshold
The scaling threshold (1) is a dynamic measure which is
being derived from the current state of the environment. The

adaptation of the coefficient is via KAMA.

3. Results and discussion

The screenshots on Fig. 3 show session snapshot data from
two different HAProxy load balancers at the same interval of
time. The current number of sessions is depicted in Sessions
Cur (current count) where unevenly distributed connections
are observed between the HAProxy instances.

On Fig. 3. are shown the metrics from a server with few
open sessions.

Fig 3. Distribution of sessions among the HAProxy instances (lower-to-
no load).

The graph over time in the Datadog monitoring is also
showing a hint towards this. Every color is a single
HAProxy session count. It appears that using this procedure
we were able to detect that AWS Route 53 is balancing in
specific way in which it is sending the first proxy IP to all
the clients then after a few seconds sends the second IP to all
clients. In this way, all clients end up connecting to the same
HAProxy for a certain time-frame. They are being balanced
over time, but peaks are piling up only on a single HAProxy
which is prone to be overloaded.

Fig. 4. Performance coefficient calculated for all balancer servers over
time.

4. Conclusions

 Our ongoing experiments delivered the following
outcomes:
- Scaling of the HAProxy instances during an online
streaming event to a maximum of 8, suggesting four. The
benefit from this would be that even if customers end up
connecting to the same HAProxy balancer, the per backend,
per proxy limits will be higher. The data shows that the
proxy machines themselves are heavily loaded and can
handle significantly large number of requests. A signle
limitation represents the active tcp connection limit of

Nweb− server− instances/NHAProxy− instances

Strahil Sokolov, Orhan Idiriz, Mihail Vukadinoff, Stefan Vlaev /Journal of Engineering Science and Technology Review SI (2020) 103-106

 106

around 65000 tcp sessions per HAProxy. This would mean
that 4 instances should easily cover 200K open connections.
- Single DNS entry should be used with multivalue
answers. Better distribution of requests has been proved with
load tests.
- Scaling efficiency can be achieved through using
automation tools and implementing the suggested approach
for autoscaling.
In the future this work will be extended into extending the
scaling approach to hybrid cloud and improving the adaptive
threshold calculation by means of neural network.

Acknowledgements
This work is supported by the University of
Telecommunications and Post (UTP), Sofia, Bulgaria,
internal research grant Nr NID16/03.04.2018 -
"UNICLOUD2.0: Development and integration of cloud
services in the learning process of UTP".

This is an Open Access article distributed under the terms of the
Creative Commons Attribution License

References

1. Khazaei, Hamzeh, Jelena Misic, and Vojislav B. Misic.

"Performance analysis of cloud computing centers using
m/g/m/m+ r queuing systems." IEEE Transactions on parallel and
distributed systems 23, no. 5 (2012): 936-943.

2. Sokolov, Strahil A., Stefan M. Vlaev, Mihail Vukadinoff, Asen P.
Zahariev, Teodor B. Iliev, and Ivaylo S. Stoyanov. "Performance
Estimation of Scalable e-Learning Systems in the Cloud." In 2018
IEEE 24th International Symposium for Design and Technology in
Electronic Packaging(SIITME), pp. 148-151. IEEE, 2018.

3. Marschall, Matthias. Chef infrastructure automation cookbook.
Packt Publishing Ltd, 2015.

4. Varia, J., 2010. Architecting for the cloud: Best practices.
5. Loope, James. Managing infrastructure with puppet: configuration

management at scale. " O'Reilly Media, Inc.", 2011.
6. Taylor, M. and Vargo, S., 2014. “Learning Chef: A Guide to

Configuration Management and Automation." O'Reilly Media, Inc..
7. Geerling, Jeff. "Ansible for DevOps." (2014).
8. Morris, Kief. “Infrastructure as code: managing servers in the

cloud." O'Reilly Media, Inc., 2016.

