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Abstract 
 
Random Codes Based on Quasigroups (RCBQ) are error-correcting codes that crypt the messages at the same time. 
These cryptcodes are proposed in 2007 and after that several improvements of coding/decoding algorithms have been 
made. For better performances for transmission through a binary-symmetric and Gaussian channel, Cut-Decoding and 4-
Sets-Cut-Decoding algorithms were defined. Also, a modification of these algorithms (Burst-Cut-Decoding and Burst-4-
Sets-Cut-Decoding algorithms) for correction of burst errors was proposed elsewhere. In this paper, we investigate 
performances of these algorithms for transmission of images through a burst channel. For simulation of burst errors, we 
use Gilbert-Elliot model. We consider two kinds of Gilbert-Eliott channel, in the first one in each state the channel is 
binary symmetric and in the second one, the channel is Gaussian. In all experiments, for different values of bit-error 
probability (in BSC) and SNR (in Gaussian), the differences between transmitted and decoded images are considered.  
From the experiments can be concluded that Burst-4-Sets-Cut-Decoding algorithms gives better results than Burst-Cut-
Decoding algorithms (i.e., clearer images) and it is much faster. Also, a filter is applied on the images (after decoding 
with RCBQs) for enhancing the quality of them. With the considered filter clearer images are obtained. In this paper we 
consider only error-correction capabilities of RCBQs, but the images decoded with these codes are also encrypted. 
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1. Introduction  
 
Random Codes Based on Quasigroups (RCBQ) defined in 
[1] are error-correcting codes that encrypt the messages, i.e., 
they are cryptcodes. There are several coding/decoding 
algorithms for RCBQ for transmission through a binary 
symmetric and Gaussian channel: Standard algorithm [1], 
Cut-Decoding algorithm [2] and 4-Sets-Cut-Decoding 
algorithm [3]. In the process of coding/decoding of these 
codes, an encryption/decryption algorithm is used and 
therefore these error-correcting codes encrypt the messages. 
A few similar combinations of error-correcting codes and 
cryptographic algorithms are proposed for cryptographic 
purposes in [4], [5] and [6]. Cryptographic properties of the 
transformations used in RCBQ are already investigated in 
several papers [7], [8], [9]. Here, we consider only error-
correction capabilities of RCBQs. 
 In order to improve performances of these codes for 
correction of burst errors, in [10] authors proposed a new 
coding/decoding algorithms called Burst-Cut-Decoding and 
Burst-4-Sets-Cut-Decoding algorithm. In this paper we 
consider performances of these algorithms for decoding 
images transmitted through a burst channel simulated with a 
Gilbert-Elliot model. We consider two kinds of Gilbert-
Eliott channels, in the first one, in each state the channel is 
binary symmetric and in the second one, in each state the 
channel is Gaussian. In all experiments, for different values 

of bit-error probability (in BSC) or different values of SNR 
(in Gaussian channel) the differences between transmitted 
and decoded images are considered. Also, in order to 
enhance the quality of decoded images a filter is applied on 
the images after decoding with RCBQs.  
 
 
2. Coding/decoding algorithms for RCBQ 
 
In this section we will briefly explain coding/decoding 
algorithms for RCBQs. A detailed description of the 
algorithms is given in previous papers for these codes [2], 
[3]. 
 Coding/decoding algorithms of RCBQs are designed 
using algorithms for encryption/decryption from the 
implementation of TASC (Totally Asynchronous Stream 
Ciphers) by quasigroup string transformation ([11]). These 
cryptographic algorithms use the alphabet Q and a 
quasigroup operation * on Q together with its parastrophe /. 
In our experiments we use the alphabet of 4-bit symbols 
(nibbles) and the quasigroup given in [3].  
 RCBQs are firstly proposed in [1] and coding/decoding 
algorithms given there we will denote as Standard 
coding/decoding algorithm. The previous investigations of 
RCBQ ([12]) showed that the speed of the decoding process 
is the biggest problem for Standard RCBQs. The main 
reason for this is the length of the lists (called decoding-
candidate sets), since the decoding of RCBQs is actually a 
list decoding. The length of the lists depends on the 
parameter Bmax - the predicted maximal number of bit errors 
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appeared during transmission of a block. The larger value of 
Bmax gives larger lists and slower decoding process. In order 
to improve the decoding speed, in [2] and [3] authors 
proposed two new coding/decoding algorithms: Cut-
Decoding and 4-Sets-Cut-Decoding algorithms. In these 
algorithms, coding/decoding of the messages is in two (in 
Cut-Decoding) or four (in 4-Sets-Cut-Decoding) parallel 
processes. The decoding-candidate sets are reduced using 
intersection of the sets obtained in the parallel decoding 
processes. On this way, faster decoding and better results for 
packet-error (PER) and bit-error (BER) probabilities are 
obtained.  
 The decoding rules in both algorithms (Cut-Decoding 
and 4-Sets-Cut-Decoding) are the following. After the last 
iteration, if there is only one element in the list (all reduced 
sets have only one element with same second component) 
then this element is the decoded message. In this case, we 
say that we have a successful decoding. If the decoded 
message is not the correct one then we have an undetected-
error. If the length of the list in the last iteration is greater 
than 1 (the reduced sets have more than one element) then 
we have a more-candidate-error. In this case we apply a 
heuristic: we randomly select a message from the reduced 
sets in the last iteration and we take this message as the 
decoded message. If in some iteration all decoding-candidate 
sets are empty then the process will be stopped (a null-error 
appears). But, if we obtain at least one nonempty decoding-
candidate set then the decoding continues with the nonempty 
sets (the reduced sets are obtained by intersection of the 
nonempty sets only). If we obtain only one nonempty set, in 
some iteration, then the decoding continues with the 
nonempty set using the Standard RCBQ decoding algorithm. 
 In all decoding algorithms for RCBQ, when a null-error 
appears, the decoding process ends earlier and only a part of 
the message is decoded. Therefore, in the experiments with 
images we use the following solution. In the cases when a 
null-error appears we take the strings without redundant 
symbols from all elements in the sets from the previous 
iteration and we find their maximal common prefix 
substring. If this substring has k symbols, then in order to 
obtain decoded message of l symbols we take these k 
symbols and we add l – k zero symbols at the end of the 
message. 
 For transmission through a burst channels, Cut-Decoding 
and 4-Sets-Cut-Decoding algorithms do not give good 
results. Therefore, in [10] authors propose new algorithms 
for coding/decoding called Burst-Cut-Decoding and Burst-4-
Sets-Cut-Decoding algorithms. It is known that interleaving 
and deinterleaving are useful for handling burst errors in a 
communication system. So, in these algorithms, we include 
an interleaver in coding algorithm and the corresponding 
deinterleaver in the decoding algorithm. Namely, in the 
process of coding before the concatenation of two (or four) 
codewords we apply the interleaving on each codeword, 
separately. The interleaver rearranges (by rows) m nibbles of 
а codeword in a matrix of order (m/k) × k. The output of the 
interleaver is a mixed message obtained reading the matrix 
by columns. Then, after transmission of a concatenated 
message through a burst channel we divide the outgoing 
message in two (or four) messages with equal length and 
before the parallel decoding we apply deinterleaving on each 
message, separately. In this way, better results for packet-
errors and bit-error probabilities for burst channel 
transmission are obtained.  
 
3. Experiments 

 
In this section we present experimental results obtained with 
RCBQ for transmission of images through a burst channel. 
Namely, we investigate performances of Burst-Cut-
Decoding and Burst-4-Sets-Cut-Decoding algorithms for 
transmission of images through a Gilbert-Elliot channel. 
 We made experiments with two kinds of Gilbert-Elliott 
channels. In the first one, in each state the channel is binary 
symmetric with bit error probabilities Pe(G) in a good state 
and Pe(B) in a bad state. In the second one, two channels are 
Gaussian where SNRG in a good state is high and SNRB in a 
bad state is low.  
 All experiments, presented in this paper, are made for 
code (72, 576) with rate R=1/8, Bmax = 5 and the following 
parameters: 
 
• In Burst-Cut-Decoding algorithm - redundancy pattern:  

1100 1100 1000 0000 1100 1000 1000 0000 1100 1100 
1000 0000 1100 1000 1000 0000 0000 0000, for rate 1/4 
and two different keys of 10 nibbles.  

• In Burst-4-Sets-Cut-Decoding algorithm – redundancy 
pattern: 1100 1110 1100 1100 1110 1100 1100 1100 
0000 for rate 1/2 and four different keys of 10 nibbles.  

• In all experiments we used the same quasigroup on Q 
given in [3]. 

 
 In our experiments we use the image of "Lenna" given in 
Fig. 1. 
 

 
Fig. 1. Image of "Lena" 

 
 In order to visually enhance damaged pixels and improve 
the image, in [13] we define a filter that transforms pixel 
intensity values of the pixels damaged by both types of 
detected errors (null-errors and more-candidate-errors). 
One pixel is considered as damaged if it belongs in a zero 
sub-block with at least four consecutive zero nibbles. For 
detection of more-candidate-errors in the filter, before 
applying the filter, we replace the decoded message 
(randomly chosen using heuristic) with a zero message. The 
basic idea in the definition of this filter is to replace 
damaged pixel intensity value with a new value taken over a 
neighborhood of fixed size. In this process we use the 
median of the nonzero gray values of the surrounding pixels, 
so the filter is a median one. In our experiments we compare 
the images obtained without and with the filter. 
 First, in Fig. 2 we present some images obtained after 
transmission through the channel without using any error-
correcting code. The first one is obtained after transmission 
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through a Gilbert-Elliott with BSCs and the second one − 
with Gaussian channels.  
 

    
Fig. 2. Images obtained after transmission through the channel without 
using any error-correcting code 
 
3.1. Experiments for Gilbert-Elliott with BSC channels 
In all experiments for Gilbert-Elliott model with binary 
symmetric channels, we use bit-error probability in the good 
state Pe(G) = 0.01 and a few different values of bit-error 
probabilities in the bad state Pe(B) Î {0.16, 0.13, 0.1} and 
the following combinations of transition probabilities from 
good to good state PGG and from bad to bad state PBB: 
 

• PGG = 0.2 and PBB = 0.8 
• PGG = 0.8 and PBB = 0.2 

 
 In Fig. 3a) we present the images for PGG = 0.2, PBB = 0.8 
and all considered Pe(B) obtained with Burst-Cut-Decoding 
algorithm and in Fig. 3b) the corresponding images obtained 
after applying the proposed filter. Images obtained for 
PGG = 0.8 and PBB = 0.2 are given in Fig. 4. 

 

     
   Pe(B) = 0.16            Pe(B) = 0.13                Pe(B) = 0.1 
a) Images without a filter  

    

 
   Pe(B) = 0.16            Pe(B) = 0.13                Pe(B) = 0.1 
b) Images with a filter  
Fig. 3. Images obtained with Burst-Cut-Decoding algorithm for         
PGG = 0.2 and PBB = 0.8 
  
From the images in Fig. 3a) and Fig. 5a) (for PGG = 0.2 and 
PBB = 0.8) we can conclude that Burst-4-Sets-Cut-Decoding 
algorithm gives better results than Burst-Cut-Decoding 
algorithm for all considered values of Pe(B). Comparing the 
images before and after applying the filter we can conclude 
that the filter significantly enhances the quality of images 
decoded with both algorithms. But, it is visible that the filter 

gives better results for the images obtained with Burst-Cut-
Decoding algorithm than with Burst-4-Sets-Cut-Decoding 
algorithm. The reason for this is the larger number of 
undetected-errors in the experiments with Burst-4-Sets-Cut-
Decoding algorithm. Namely, the filter cannot detect this 
kind of errors. 

 

    

 
   Pe(B) = 0.16            Pe(B) = 0.13                Pe(B) = 0.1 
a) Images without a filter  

    

 
   Pe(B) = 0.16            Pe(B) = 0.13                Pe(B) = 0.1 
b) Images with a filter  
Fig. 4. Images obtained with Burst-Cut-Decoding algorithm for         
PGG = 0.8 and PBB = 0.2 
  

Images obtained with Burst-4-Sets-Cut-Decoding 
algorithm for PGG = 0.2, PBB = 0.8 are presented in Fig. 5 and 
for PGG = 0.8 and PBB = 0.2 in Fig. 6. 
 

    

 
   Pe(B) = 0.16            Pe(B) = 0.13                Pe(B) = 0.1 
a) Images without a filter  
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   Pe(B) = 0.16            Pe(B) = 0.13                Pe(B) = 0.1 
b) Images with a filter  
Fig. 5. Images obtained with Burst-4-Sets-Cut-Decoding algorithm for 
PGG = 0.2 and PBB = 0.8 

 

    

 
   Pe(B) = 0.16            Pe(B) = 0.13                Pe(B) = 0.1 
a) Images without a filter  

    

 
   Pe(B) = 0.16            Pe(B) = 0.13                Pe(B) = 0.1 
b) Images with a filter  
Fig. 6. Images obtained with Burst-4-Sets-Cut-Decoding algorithm for 
PGG = 0.8 and PBB = 0.2 
 
 The images for PGG = 0.8 and PBB = 0.2 (in Fig. 4 and 
Fig. 6) are clearer due to the smaller number of errors in the 
channels with these transition probabilities. Therefore, in 
these images there is no great difference between the images 
decoded with both algorithms and after applying the filter.  
 
3.2. Experiments for Gilbert-Elliott with Gaussian 
channels 
In this subsection, we present the experimental results for 
Gilbert-Elliott model with Gaussian channels for SNRG = 4 
and different values of SNRB Î {−3, −2, −1}. For these 
channels we made experiments with the same transition 
probabilities as in the experiments with binary symmetric 
channels. 

 Images obtained with Burst-Cut-Decoding algorithm for 
PGG = 0.2, PBB = 0.8 and all considered SNRB are given in 
Fig. 7a). The images in Fig. 7b) are obtained from the 
images given in Fig. 7a) after applying the filter. Images for 
PGG = 0.8 and PBB = 0.2 are given in Fig. 8. 
 

    

 
         SNRB = −3                       SNRB = −2                      SNRB = −1 
a) Images without a filter  

    

 
        SNRB = −3                       SNRB = −2                      SNRB = −1 
b) Images with a filter  
Fig. 7. Images obtained with Burst-Cut-Decoding algorithm for  
PGG = 0.2 and PBB = 0.8 
 

    

 
        SNRB = −3                       SNRB = −2                      SNRB = −1 
a) Images without a filter  
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        SNRB = −3                       SNRB = −2                      SNRB = −1 
b) Images with a filter  
Fig. 8. Images obtained with Burst-Cut-Decoding algorithm for  
PGG = 0.8 and PBB = 0.2 
 
 In Fig. 9a) (without filter) and Fig. 9b) (with the filter) 
we present the images obtained with Burst-4-Sets-Cut-
Decoding algorithm for PGG = 0.2 and PBB = 0.8. Images 
obtained with this algorithm for PGG = 0.8 and PBB = 0.2 are 
given in Fig. 10. 
 Analyzing the images given in this subsection 
(transmitted through a Gilbert-Elliott with Gaussian 
channels) we can derive the same conclusions as for images 
transmitted through a Gilbert-Elliott with BSCs. 
 

    

   
        SNRB = −3                       SNRB = −2                      SNRB = −1 
a) Images without a filter  

    

 
        SNRB = −3                       SNRB = −2                      SNRB = −1 
b) Images with a filter  
Fig. 9. Images obtained with Burst-4-Sets-Cut-Decoding algorithm for 
PGG = 0.2 and PBB = 0.8 
 

    

 
        SNRB = −3                       SNRB = −2                      SNRB = −1 
a) Images without a filter  

    

 
        SNRB = −3                       SNRB = −2                      SNRB = −1 

b) Images with a filter 
Fig. 10. Images obtained with Burst-4Sets-Cut-Decoding algorithm for 
PGG = 0.8 and PBB = 0.2 
 
 
4. Conclusions 
 
In this paper, we investigate performances of Burst-Cut-
Decoding and Burst-4-Sets-Cut-Decoding algorithms for 
transmission of images through a Gilbert-Elliot channel. 
From the presented experimental results, we concluded that 
these algorithms show good performances for all considered 
channel parameters. We can see that in all experiments a 
great number of transmission errors is corrected. Also, 
comparing the images decoded by two considered 
algorithms we can conclude that Burst-4-Sets-Cut-Decoding 
algorithms gives better results than Burst-Cut-Decoding 
algorithms. Comparing the running times, it is evidently that 
the decoding with Burst-4-Sets-Cut-Decoding algorithm is 
much faster than decoding with Burst-Cut-Decoding 
algorithm. Also, the median filter is applied on the images 
(after decoding with RCBQs) for enhancing the quality of 
them. On this way, we obtain clearer images for both 
algorithms and all channel parameters. At the end, we must 
note that the encryption algorithm used in the design of these 
codes provides information security of the transmitted 
images. 
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