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Abstract 

 
Uncertainty in economics still poses some fundamental problems illustrated, e.g., by the Allais and Ellsberg paradoxes. 

To overcome these difficulties, economists have introduced an interesting distinction between risk and ambiguity 

depending on the existence of a (classical Kolmogorovian) probabilistic structure modeling these uncertainty situations. 

On the other hand, evidence of everyday life suggests that context plays a fundamental role in human decisions under 

uncertainty. Moreover, it is well known from physics that any probabilistic structure modeling contextual interactions 

between entities structurally needs a non-Kolmogorovian quantum-like framework. In this paper we introduce the notion 

of contextual risk with the aim of modeling a substantial part of the situations in which usually only ambiguity is present. 

More precisely, we firstly introduce the essentials of an operational formalism called the hidden measurement approach 

in which probability is introduced as a consequence of fluctuations in the interaction between entities and contexts. 

Within the hidden measurement approach we propose a sphere model as a mathematical tool for situations in which 

contextual risk occurs. We show that a probabilistic model of this kind is necessarily non-Kolmogorovian, hence it 

requires either the formalism of quantum mechanics or a generalization of it. This insight is relevant, for it explains the 

presence of quantum or, better, quantum-like, structures in economics, as suggested by some authors, and can serve to 

solve the aforementioned paradoxes. 
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1. The notion of contextual risk  

 

The expected utility hypothesis requires that individuals 

evaluate uncertain prospects according to their expected 

level of ‘satisfaction’ or ‘utility’ [1]. This hypothesis 

characterizes the predominant model of choice under 

uncertainty in economics. However, it is well known that 

examples and experiments exist in the literature, e.g., the 

Allais and Ellsberg paradoxes [2,3], which show that real-

life subjects seem to prefer ‘sure choices’ over ‘choices 

containing ambiguities’, which entails a violation of the 

expected utility hypothesis. Several proposals have been 

elaborated since the fifties to understand and explain these 

paradoxes, but a universally accepted interpretation is still an 

unachieved goal. 

Frank Knight introduced a distinction between different 

kinds of uncertainty [4], and Daniel Ellsberg inquired into 

the conceptual differences between them [3]. More 

explicitly, Ellsberg put forward the notion of ambiguity as an 

uncertainty without any well-defined probability measure to 

model this uncertainty, as opposed to risk, where such a 

probability measure does exist. We can understand the 

difference between ambiguity and risk by considering the 

situation introduced by Ellsberg himself. Two urns are 

considered, one of them containing 30 red balls, and the 

other containing 60 balls that are that are either black or 

yellow, the latter in unknown proportion. Two bets are 

introduced, bet I ‘betting on red’, and bet II ‘betting on 

black’. Bet I concerns risk, since the probability involved is 

known, namely 1/3 to win and 2/3 to loose. For bet II 

however, since it is only known that the sum of the black 

and the yellow balls is 60, the number of black balls is not 

explicitly known. This means that if no additional 

information is given specifying in more detail the situation, 

bet II is related to a situation of ambiguity. We do not 

consider further the Ellsberg paradox here, but refer to [5] 

where we analyze it in detail. 

It is important to note that the probability description 

meant by Ellsberg and economists, when they define ‘risk’ 

as ‘uncertainty for which an explicit probability description 

is known’, is a classical probability description, in the sense 

that is satisfies Kolmogorov’s axioms [6], hence it is 

commonly called a Kolmogorovian probability. It is well 

known that the probability description used in quantum 

mechanics is not Kolmogorovian [7-9]. It also has been 

understood where quantum probability differs from classical 

Kolmogorovian probability. Namely, a classical 

Kolmogorovian probability can only model a situation of 

‘lack of knowledge about an underlying deterministic 

reality’ and such that the tests involved to measure the 

probabilities do not influence the underlying situation in a 

non-determined way. This means that if ‘contextual 

influence’ is present, in the sense that ‘tests do influence the 

underlying situation a non-determined way’, such a situation 

cannot be described by a classical Kolmogorovian 


 

JOURNAL OF 

Engineering Science and 

Technology Review 
 

 www.jestr.org 

 

______________ 
     *  E-mail address: diraerts@vub.ac.be 

ISSN: 1791-2377  2011 Kavala Institute of Technology. All rights reserved.  

 



D. Aerts and S. Sozzo /Journal of Engineering Science and Technology Review 4 (3) (2011) 241 – 245  

 

 242 

probability. The probability appearing in quantum 

mechanics can exactly describe the presence of such 

contextual influence. 

Now, contextual influence commonly appears in 

situations of risk. Let us consider, for example, the risk of 

having an accident. It is evident that if a person is in a 

context where he or she is sitting in a chair reading the 

newspaper on his or her terrace, the risk of having an 

accident is low if compared with the risk of getting an 

accident when this person is in the context of sitting in a car 

next to a reckless driver. In case ‘risk to have an accident’ is 

considered with respect to this person, then the two 

mentioned contexts will have a different influence on the 

probabilities describing this risk. Similar examples can be 

found in risk management, where one has to identify, 

monitor and control the external factors, including accidents, 

natural causes and disasters, which can potentially affect 

given financial operations. 

The above considerations bring us to the first aim of the 

present article. Namely, we want to introduce the notion of 

contextual risk, as a generalization of the notion of risk as 

conceived in traditional economics. Contextual risk is 

uncertainty that is present in a situation for which an explicit 

probabilistic description exists, ‘but’ the probability used 

can be non-classical, i.e. non-Kolmogovian. Possibly the 

probability can be of a quantum nature, but this is not 

necessarily so. We will indeed see in next section that more 

general contextual probability theories exist than the 

quantum one, and also these will be considered for the 

notion of contextual risk. The second aim of this article is to 

point out that with this notion of contextual risk, we are able 

to model uncertainty that traditionally is classified as 

ambiguity. More specifically, we are able to model the 

ambiguity appearing in the Ellsberg paradox [5]. In Sec. 3 

we present a simple example that can be used to model 

situations in which contextual risk occurs. This example 

provides a conceptual and mathematical tool that can be 

applied to concrete cases in economics, which we aim to do 

in the near future.  

 

 

2. The hidden measurement approach as a contextual 

probability theory 

 

One of the characteristic traits of quantum mechanics is the 

measurement context provoking an indeterministic influence 

on the physical system that is considered. The mathematical 

formalism of quantum mechanics describes precisely this 

influence and its corresponding probabilities, which is why 

the quantum probability model is a probability model which 

can incorporate the effect of context. The situation of 

contextual influence outside physics is, in general, more 

complex than the one encountered in the microscopic world, 

but generalizations of the mathematical formalism of 

quantum mechanics can be used in these cases. In particular, 

in our Brussels research group we have developed a 

generalization of the contextual probability model employed 

in quantum mechanics, which we have called ‘the hidden 

measurement approach’ [9,10]. The development of this 

hidden measurement approach followed from our finding 

that the non-Kolmogorovian nature of the quantum 

probability model is due to a lack of knowledge concerning 

how context interacts with the system under consideration, 

i.e. by the presence of fluctuations in the interaction between 

context and system [10-14]. Even if we were to suppose that 

at the ontological level the interaction between context and 

system engenders a change of state that is deterministic, a 

lack of knowledge about this interaction gives rise to a 

probability model that does not satisfy Kolmogorov’s 

axioms. The quantum probability model is of this nature, i.e. 

can be explained as a model with lack of knowledge of ‘how 

the measurement acts and influences the physical system 

under study’. Let us illustrate more in detail this hidden 

measurement approach and how we can apply it to deliver a 

mathematical theory for the notion of contextual risk that we 

introduced in this article.  

Consider a physical system S  and states , , ,...p q r  that 

represent different situations in which S  can be. Consider 

measurements , , ,...e f g  that can be performed on this 

physical system S  being in one of the considered states. 

The case we consider is such that the outcome of an arbitrary 

measurement e  on the system S  in a state p  is in general 

‘not’ determined, i.e. we are in a situation where 

‘uncertainty’ is present. More concretely, at least for the case 

of physics, this means that if we repeat the measurement e  

on the system S  being each time prepared in the same state 

p , generally different outcomes will occur. Let us recall 

that this does not necessarily mean that ‘all considered 

situations are non-deterministic’. There might well be some 

states and some measurements giving rise to deterministic 

outcomes. This is, by the way, also the case in quantum 

mechanics, and such states with deterministic outcomes are 

called ‘eigenstates’ of the measurement in question. Also 

more determinism than what is allowed in quantum 

mechanics is possible within the hidden measurement 

approach. Indeed, the hidden measurement approach is a 

generalization of quantum (Sec. 1), as well as of classical 

mechanics, which is the reason that also the full 

deterministic case can occur. Both quantum mechanics and 

classical mechanics are special cases of our approach. 

The principal idea of the hidden measurement approach 

is that the uncertainty can have its origin in two distinct 

ways. First of all, it is possible that we lack knowledge about 

the state p  of the system. This type of uncertainty can be 

treated by classical mechanical theories, technically it means 

that the state p  in question is a mixed state and not a pure 

state, which it would be in case we do not lack knowledge 

about it. The second possibility is the new one, namely that 

we lack knowledge about the measurement context e , more 

specifically about ‘how the measurement e  interacts with 

the system’, or, with other words, ‘how the system behaves 

specifically in the considered measurement context e  during 

the act of measurement’. The uncertainty finding its origin in 

this ‘contextual lack of knowledge about the measurement 

context’ cannot be described by classical mechanical 

theories. A quantum-like theory is needed, and the hidden 

measurement approach developed in our Brussels research 

group is a mathematical theory able to describe all 

uncertainties of the first ‘and’ of the second type, hence 

whether they find their origin in a lack of knowledge about 

the state p  of the system S  or in a lack of knowledge about 

how the measurement e  interacts with the system S  during 

the carrying out of this measurement. 

Let us now explain how the hidden measurement 

approach can be applied to provide a mathematical modeling 

for the notion of contextual risk. Economists are interested 

in ‘decisions taken by humans with respect to specific 

situations’, such as the situation described in the Ellsberg 

paradox. In the process of decision making there will 
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generally be a ‘cognitive influence’ having its origin in the 

way the mind(s) of the person(s) involved in the decision 

making relate to the situation that is the subject of the 

decision making. The role played in physics by ‘the physical 

system’ is played in economics by ‘the considered situation’, 

the role played in physics by the measurement is played in 

economics by the ‘cognitive context’, and the role played in 

physics by the interaction during the measurement is played 

in economics by the decision interaction between mind and 

situation. The cognitive context incorporates in principle all 

types of cognitive aspects that are able to influence the 

decision interaction. Quite obviously we generally are in a 

situation that there is lack of knowledge about the situation 

itself, but also lack of knowledge about the decision context 

and how it interacts with the situation. This presence of the 

specific double lack of knowledge is what makes contextual 

probability, i.e. the hidden measurement approach, apt for 

providing a faithful description.   

We have been employing already the description by 

means of contextual probability models to the situation of 

human decision making a long time ago for the study of an 

opinion poll [15]. Of course, this was in the realm of 

psychology-sociology and at that time we were not aware 

that our modeling of the opinion poll contains the roots for 

also modeling the human decisions in economic situations. 

The years after this initial use of the quantum formalism for 

describing contextual aspects of human thought we went to 

investigating the structure of concepts and their 

combinations [16-18]. This is what made us introduce the 

notion of ‘conceptual landscape’ indicating the aspect of 

human thought that constitutes the cognitive context when 

decisions are made. More specifically we put forward the 

hypothesis that human thought consists of two superposed 

layers: (i) a layer given form by an underlying classical 

deterministic process, incorporating essentially logical 

thought and its indeterministic version modeled by classical 

probability theory; (ii) a layer given form under influence of 

the totality of the surrounding conceptual landscape, where 

the different concepts figure as individual entities rather than 

(logical) combinations of others, with measurable quantities 

such as ‘typicality’, ‘membership’, ‘representativeness’, 

‘similarity’, ‘applicability’, ‘preference’ or ‘utility’ carrying 

the influences. We have called the process in this second 

layer ‘quantum conceptual thought’, which is indeterministic 

in essence, and contains holistic aspects, but is equally well, 

although very differently, organized than logical thought. A 

substantial part of the ‘quantum conceptual thought process’ 

can be modeled by quantum mechanical probabilistic and 

mathematical structures [19-21].  

Before we put forward a simple example of a contextual 

probability situation in Sec. 3, we want to mention that the 

line of research consisting of employing the quantum 

mechanical probability model to describe aspect of human 

thought has enjoyed meanwhile an explosive growth 

internationally, and has now become a new emergent 

domain of research called Quantum Cognition. To date, four 

international conferences have been organized, a fifth one 

being due in June [22-25]. There is a Wikipedia page 

explaining the essentials of Quantum Cognition at 

http://en.wikipedia.org/wiki/Quantum_cognition, where also 

an overview of the literature can be found. We stress, to 

conclude this section, that the presence of a quantum 

structure in cognition does not necessarily entail the 

requirement that microscopic quantum processes occur in 

human mind. In fact, we avoid engaging ourselves in such a 

compelling assumption in the following. 

 

3. The sphere model as an example of a contextual 

probability situation 

 

We introduce in this section a simple example that illustrates 

the way in which a contextual probability model can be 

built. We call this example the sphere model, since we have 

used it before under this naming in our study of the hidden 

measurement approach [10,11,12,14]. The example shows 

explicitly how contextual structures can be worked out 

which exhibit a quantum-like behavior and are non-

Kolmogorovian from a probabilistic point of view. For this 

reason, our sphere model can be used as a modeling 

instrument in economic situations where contextual risk 

occurs, and we will use it to describe a contextual risk 

analysis of the Ellsberg paradox situation [5]. Let us start 

with a brief presentation of the model. 

The physical system that we consider is a point particle 

P  that can move on the surface of a sphere with center O  

and radius 1, and we shall denote this surface by surf . This 

particle P  is our physical system S  (see Fig. 1). In our 

model of the point particle we consider the unit vector v  

where the particle is located on surf  at a certain instant of 

time t  as representing the state of this particle at time t , its 

place on the surface of the sphere, that we shall denote by 

vp . Let us now introduce the measurement contexts. We 

consider two diametrically opposite points u  and u  on the 

surface of the sphere, and an elastic band attached between 

these two points (see Fig. 1). 

  

 

 
 
Fig. 1. The sphere model as an example of a contextual probability 

situation 

 

 

We shall systematically denote by [ , ]u u  the ‘interval’ 

of real numbers [ 1,1]u , coordinating the points of the 

elastic band between u  and u  in such a way that 1  

coordinates u  and 1  coordinates u . The measurement 

context ue  consists of the following happening: the particle 

P  falls from its original place v  orthogonally onto the 

elastic band between u  and u , and sticks on it in a point 

a  (see Fig. 1), coordinated in the interval [ , ]u u  by the real 

number v u . Then the elastic band breaks in a certain point. 

The breaking of the elastic band is the ‘lack of knowledge 

about the context’ that we introduce in the example. Indeed, 

depending on ‘in which point the elastic band breaks’ two 

different changes happen to the state vp  of the system S , 

which is our point particle, now sticking in point a  to the 

elastic band. If the band breaks in a point contained in region 

1L  from a  to u , the particle P  is pulled towards u , and 
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finally sticks to the sphere again, at point u . This means 

that in this case state 
vp  is transformed into state 

up
. If the 

band breaks in the region 
2L  from a  to u , the particle P  

is pulled towards u , and finally sticks to the sphere again, at 

point u . This means that in this case state 
vp  is transformed 

into state
up . If the elastic band breaks exactly in point a we 

suppose that there is probability 1/ 2  for the particle to be 

pulled towards u , and hence state 
vp  changes into state 

up
, and probability 1/ 2  for the particle to be pulled 

towards u , and hence state 
vp  changes into state 

up . The 

uncertainty introduced by the breaking of the elastic band 

gives rise to a contextual probability. Let us propose a 

mathematical model for this. In the interval [ , ]u u  we 

consider a random variable x , coordinating the point where 

the elastic band breaks. The random variable x  can be 

interpreted as describing the (hidden) internal construction 

of the measuring apparatus, in this case the mechanism of 

breaking of the elastic band. Different mechanisms of 

breaking of the elastic band can be considered, and these 

different mechanisms give rise to classical, quantum or 

intermediate (quantum-like) situations at a probabilistic 

level. The different mechanisms can be described by 

considering a distribution   of the variable [ , ]x u u   for 

each of the mechanisms,  

 

where 

 

:[ , ] [0, ]u u          (1) 

 

such that  

 

( )x dx


        (2) 

 

is the probability that the random variable [ , ]x u u  , i.e. 

that the elastic band breaks in  . We also have 

 

[ , ]

( ) 1
u u

x dx


        (3) 

 

which expresses the fact that the elastic band always breaks 

during a measurement. A measurement context ue  where the 

random variable [ , ]x u u   is distributed as described by   

will be called a  -measurement and denoted by 
ue . 

In Fig. 2 we have represented such a measurement 
ue  

and drawn the probability distribution function ( )x  such 

that the definition interval of this function coincides with the 

line joining the points u  and u . The transition 

probabilities ( , , )u u vp e p  and ( , , )u u vp e p   that the 

particle P  arrives at point u  and u  under the influence of 

the measurement 
ue , are respectively given by 

 

1

1

( , , ) ( )

( , , ) ( )

v u

u u v

u u v

v u

p e p x dx

p e p x dx





 

 

















      (4) 

 
Fig. 2: Different mechanism of breaking of the elastic band 

 

 

It can be shown that, depending on the particular 

expression of the density function 

   

r , the sphere model is a 

model for a spin 1/2 quantum particle (uniform distribution) 

or a model for a deterministic classical system (deterministic 

measurements). But, in general, the sphere model is neither 

purely classical nor purely quantum [26]. In any case, the 

contextuality involved in it, together with the fact that the 

probabilities in Eq. (4) cannot be put into a Kolmogorovian 

scheme make it a quantum-like model. Indeed, physicists 

have proven that there is no possibility to capture this type of 

situation by a unique Kolmogorovian probability model, as it 

can be seen by using Pitowsky’s classification scheme, with 

polytopes, or with Bell-type inequalities [7-9]. 

We conclude this section by observing that the sphere 

model presented above constitutes an example of a 

contextual structure showing a non-Kolmogorovian 

quantum-like behavior, hence it can be successfully applied 

to describe economic situations in which contextual risk 

appears, thus modeling what has been called `ambiguity’ in 

the literature and supporting the suggestion put forward by 

some authors according to which quantum-like structures 

can be identified in economics. We intend to apply the 

sphere model to a specific situation in which contextual risk 

is present, namely the Ellsberg paradox [5]. 

 

 

4. Conclusions 

 

Risk has been formally defined in theoretical economics as 

‘uncertainty under the presence of an explicit mathematical 

probability model’, while ambiguity refers to these situations 

where no such explicit mathematical probability model 

exists. These notions were introduced as a consequence of 

reflections about situations such as the Allais and the 

Ellsberg paradox. They have become even more important, 

because it has become clear that the deviations from rational 

thought for economic agents are linked quite strictly to the 

presence of ambiguity (see, e.g., [28]). Sometimes this is 

expressed as ‘ambiguity aversion’, but the situation is more 

complex. Namely the presence of different types of contexts 

can provoke deviations from rational thought, and ‘aversion 

of ambiguity’ is only one – albeit an important one – of 

these possible contexts. The traditional definition of risk 

‘only’ takes into account models coming from classical 

probability theory. From studies in quantum probability it 

has become clear that it is exactly the presence of context 

which cannot be modeled within classical probability theory 

‘and’ which can be modeled if recourse is taken to a 

quantum probability model. This makes it possible for us to 

introduce the notion of ‘contextual risk’, and to prove that 
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contextual risk is able to model situations that in the 

classical economics approach are classified as ‘ambiguity’. 

Hence, our ‘contextual risk’ approach allows the 

mathematical modeling of situations of ambiguity by using a 

quantum probability model. We have already analyzed the 

original Ellsberg paradox in this ‘contextual risk’ approach 

[5], and plan to analyze different known and important 

situations in economics within our contextual risk approach.  

Our approach has not yet been applied to a concrete 

situation in economics where experimental data already 

exist, which is the next step that we intend to undertake by 

firstly considering the Ellsberg example [5]. A plan on the 

long term is instead to investigate ‘on which aspects of 

typical grand economic crises’, such as the crisis which 

started in 2008 and is still continuing, can be shed light – in 

the form of providing new and insightful modeling – within 

this contextual risk approach. We have at our disposal a very 

well developed and mathematically strongly elaborated 

approach to contextual probability, because in the two 

decades that have passed we worked out – at that time purely 

for reasons of investigating the nature of the quantum 

probability model – an approach, which we called the 

‘hidden measurement approach’, where the quantum 

probability model is defined starting from the idea of a 

contextual deviation of a classical probability model. Hence, 

the mathematical material that we developed for this hidden 

measurement approach will be fully used for a further 

elaboration of the contextual risk approach. 
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