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Abstract 
The current paper investigates the major index of the Bulgarian Stock Exchange with respect to the presence of long-

range dependence and principal predictability of the index. The wavelet transform is utilized in order to carry out the 

investigation since it is a well-suited tool for the analysis of fractal processes and sheds additional light to the term 

structure of the index. 
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1. Introduction  

In recent papers Lomev and co-writers [1-3] confirm the 

presence of long-range dependence (LRD) of SOFIX on 

other East-European stock exchange indexes. The presence 

of LRD is closely related to persistency, that is, positive 

values are likely to be followed by positive values and 

negative values are likely to be followed by negative values. 

The latter implies that the chance to predict correctly the 

future direction of the process is greater than 50%. Actually, 

the problem of predictability of SOFIX has been already 

investigated by Lomev and Ivanov [4] and it turns out that 

the index is predictable. From this point of view the current 

paper utilizes the wavelet transform in two directions. 

Firstly, LRD presence for SOFIX is detected. Secondly, 

wavelet-based forecasts are developed for the index, in order 

to test it for principal predictability and to investigate its 

term structure.  

A good reasoning behind the application of the wavelet 

transform is that it is a proper tool for the analysis of 

financial data. On one hand financial data incorporates 

information about decisions and actions taken by market 

participants, operating over different time horizons and on 

the other hand the wavelet transform of some series 

decomposes the original sequence over a range of frequency 

scales. The wavelet transform may be continuous or discrete; 

however for empirical purposes the discrete wavelets 

transform (DWT) is preferred. Different algorithms are 

developed for the implementation of DWT, each one having 

its advantages and drawbacks. A detailed discussion may be 

found for example in [5], [6]. The current investigation 

utilizes the triangle algorithm of Mallat [7] for the detection 

of LRD and the á trous wavelet transform [6] for prediction 

purposes. 

 

2. Long-range dependence 

 

Long-range dependence is one of the important forms of 

scale invariance. A long-range dependent process is 

characterized by a very slowly decaying autocorrelation 

function. Such processes are properly modeled as 

FARIMA(p,d,q) processes, introduced by Granger [8] and 

Hosking [9] which are defined as follows:  
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B  is the backshift operator and 
tZ  is a discrete white noise. 

LRD is present when the fractional differencing parameter 

 0,1 2d .  

For the estimation of the fractional differencing 

parameter are developed a lot of methods based on 

frequency analysis. The method used in the current paper is 

based on wavelet analysis since the wavelet transform is a 

natural tool for studying scale invariant processes. The 

triangle algorithm of Mallat is applied. It filters the original 

data series  0 1 1, , , NX X X X  using a pair of high-pass 

and low-pass filters denoted respectively as 

 0 1 1, , , Lh h h h  and  0 1 1, , , Lg g g g , each of length 

L , L N . The wavelet and scaling coefficients 

corresponding to the first level of decomposition  1j   are 

obtained via 
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where 0,1, , / 2 1t N  . It should be noted that a 

downsampling operation is involved. This can be seen from 

the subscript of X  in Eq.4 and Eq.5. More generally, the 

formula for the wavelet and scaling coefficients 

corresponding to the j
th
 level of decomposition of X  at 

scale 2 j  is  
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for 2, ,j J  and 0,1, / 2 1jt N  .  

The output of the j
th
 level of decomposition is a vector 

of wavelet coefficients  ,0 ,1 , / 2 1
, , , jj j j N

w w w


jw  and a 

vector of scaling coefficients  ,0 ,1 , / 2 1
, , , jj j j N

c c c


jc , 

both of which are of length / 2 j

jN N , 1, ,j J . In this 

application the finest scale (high frequency) corresponds to 

1j   and we will further refer to j  as octave.  

An important feature of the Mallat algorithm is that it is 

a decimated, orthogonal transform but it is not shift-

invariant. Such a decomposition decorrelates the 

complicated structure of long-range dependent processes, 

which makes it suitable for estimation of the fractional 

differencing parameter. The estimation method  that is to be 

presented follows closely the article of Arby and co-writers 

[10]. They investigate the relationship between the variance 

of each wavelet sequence jw  to the octave j  for scale 

invariant processes and define the exact log-scale diagram as 

the plot of  

 

  2log varjs  jw       (8) 

 

against the octave j  in the interval  1 2,j j  for which 

scaling behavior is present. The index 1j  is an integer and is 

called the high frequency cutoff and the index 2j is also an 

integer, called low frequency cutoff. In this interval the plot 

will be a straight line with a slope coefficient  
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It is obvious that from Eq.9 the estimate of the fractional 

differencing parameter can be derived from the estimate of 

the slope coefficient  . Since js  is not known an unbiased 

estimate of it is given by jy , defined as: 
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Generally to the plot of 
jy  against the octave is referred 

to as the logscale diagram. An unbiased estimator of the 

slope coefficient   is obtained through linear regression 

over 
jy  in the range  1 2,j j . The variance of 

jy  is denoted 

by 2

j  and can be approximated as:   
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It is reasonable to adopt weighted linear regression in 

order to diminish the variance of the estimate and thus the 

unbiased estimate of the slope coefficient is given by: 
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From Eq.9 and Eq.14 the estimate of the fractional 

differencing parameter is:  
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The cutoff 1j  is empirically selected. One simple choice 

is to identify the point from which the line gets straight. 

Another option is to perform Monte Carlo experiments and 

to choose that value of 1j  for which the mean squared error 

is minimal. We performed such experiments over 4500 

simulated series of fractional Gaussian noise with 

 0,0.5d , each of length 2048. The results show that if 

the true parameter value is in the range  0,0.20 , then the 

optimal choice is 1 1j  . When the true value is in the range 

of  0.20,0.50 , then 1 2j  . Theoretically, 2j  is chosen to 

be as large as possible. Practically, it is prescribed that 

 

 2 2logj N Const   ,     (16) 

 

where Const  is a constant and when Daubechies wavelets 

are used, its value is  2log 2 1n , where n  is the number 

of vanishing moments.  

The raw data consists of the daily close values of SOFIX 

for the period between Jan, 1, 2002 and Feb, 28, 2011. The 

data is transformed into logarithmic returns. For the 

purposes of our investigation, the Daubechies low-pass and 

high-pass filters, as derived from the Daubechies wavelet 

function with 3 vanishing moments [11], are applied. From 

Eq.16 the level of decomposition was determined to be 8. 

Following Eq.10, we evaluated jy , 1, ,8j  , and the log-

scale diagram is presented in Fig.1. It can be seen that the 
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plotted values are scattered relatively close to a straight line; 

it is difficult to determine the value of 
1j , though. 

Considering the results of the numerical experiments, the 

fractional differencing parameter is estimated from Eq.15 for 

1 11 and 2j j   and the estimates are presented in Table 1. 

The results clearly show that there is a long-range 

dependence. Similar to those results are obtained by utilizing 

the Whittle method.  
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Fig. 1. Log-scale Diagram 

 

 

Table 1. Estimates of the fractional differencing parameter 

for SOFIX 

 11 j  21 j  

d̂  
0.1447 0.1804 

 

 

3. Predictability 

 

For prediction purposes the so called “á trous” algorithm is 

used. Contrary to the Mallat algorithm, the “á trous” 

algorithm is a non-orthogonal, redundant, oversampled 

transform, but it is shift-invariant and hence, well-suited for 

forecasting purposes. In the current paper the Haar “á trous”  

wavelet transform, introduced by Zheng and co-writers [12] 

is applied; utilizing the simple low-pass filter 
1 1

,
2 2

 
  
 

g . It 

decomposes the original sequence 0 1( , , )NX X X  as a 

superposition of the form: 
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0,1, , 1t N  . By  ,0 ,1 , 1, , ,J J J Nc c c Jc  is denoted a 

smooth version of the original signal X  and 

 ,0 ,1 , 1, , ,j j j Nw w w jw  represents the detail of X  at scale 

2 , 1,j j J  . The creation of the first wavelet resolution 

level is derived from the convolution of the input data with 

g . For the j
th
 level of decomposition we have:  
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and 
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for 0, , 1t N  . The sequence of detail and smooth 

coefficients are given by N -length vectors for every scale 

of decomposition.  

The prediction model that is to be used is developed by 

Renaud and co-writers [13]. They present the multiscale 

autoregressive (MAR) model and show in a simulated study 

that the MAR technique outperforms the ordinary 

autoregressive models when the process of interest is long-

range dependent. The one step ahead forecast for a MAR 

model is calculated as follows:  
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In this model there are 
1

1

J

j

j

Q A




  unknown parameters 

which are estimated by least squares regression. 

One of the attractive features of this forecasting 

technique is that it is parsimonious and preserves just as 

many terms as necessary. The MAR type of models are very 

flexible tool for data analysis since when the original data 

shows high frequency variation jA  is selected to be greater 

for the small values of j  and is set to zero or one for larger 

j . The converse is true in the case of 1/ f  behavior.  

We have already confirmed that SOFIX is long-range 

dependent so now it is interesting to see whether the latter 

statement is true. The data consists again of the logarithmic 

return series of SOFIX for the same period. To the data is 

applied the Haar “á trous” transform following Eq.18 and 

Eq.19 for 4J  . The first 1500 observations (approximately 

2/3 of the data) are used to estimate the parameters of the 

model, the rest of the observations are retained for test 

purposes. As a starting point is considered the MAR(1) 

model which for short will be referred to as M1 model and 

its general form is given by Eq.21: 
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It turns out that the estimated coefficient corresponding 

to the finest detail series 1, 1tw   is insignificant. This was 

anyway an expected result. More surprising is the fact that 

the coefficient corresponding to the coarsest detail series 

4, 1tw   is also insignificant. Thus another model is estimated, 

further referred to as M2 model, for which the finest and 

coarsest detail series are skipped, i.e. only the series  

2, 1 3, 1 4, 1, ,  and t t tw w c    are retained as regressors. The 

information criteria of Akaike and Schwarz for this model 

are improved, compared to M1 model. This implies that the 

moderate frequency scales influence the index future values. 

Besides these two models, many other alternative models 

were fitted, but none of them performed better, in terms of 

the information criteria. In addition, for each detail series 

, 1, ,4j jw , and for the smooth series 4c individual 

ARMA models were fitted and thus one step ahead 

individual forecasts were calculated. The forecast of the 

logarithmic return series was derived as the sum of the 

individual predictions following Eq. 17 and it will be further 

referred to this model as M3 model. 
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Table 2. Forecasting errors and directional symmetry 

 MSE DS 

Zero forecast 3.3258e-004 -  

M1 model 3.2868e-004 53.11% 

M2 model  3.2844e-004 52.70% 

M3 model 3.3225e-004 51.55% 

 

 

Table 2 presents the mean squared errors (MSE) of the 

one step ahead forecasts over the test set for the three models 

just discussed. Also the MSE for the zero forecast is given 

since this is the best forecast, if the index prices are 

following random walk process without drift. For all of the 

models the calculated MSE is smaller than the MSE of the 

zero forecast which confirms the principal predictability of 

SOFIX. The minimal MSE is for M2 model. The last 

column of Table 2 (denoted by DS) gives the directional 

symmetry, i.e. the percentage of correctly predicted 

directions in respect to the index. It is interesting that for all 

of the three models, the directional symmetry is greater than 

50% and the highest value was achieved for the first model. 

Fig.2, Fig.3 and Fig.4 present the forecasted series by M1, 

M2, and M3 models, respectively, versus the logarithmic 

returns of SOFIX; the red lines being the forecasted series.  
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Fig. 2. One step ahead forecasts obtained by the M1 model versus actual 

values 
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Fig. 3. One step ahead forecasts obtained by the M2 model versus actual 
values 
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Fig. 4. One step ahead forecasts obtained by the M3 model versus actual 

values 
 

4. Conclusions 

 

The current investigation confirms the presence of LRD for 

SOFIX and the index turns out to be principally predictable, 

which is indicative for market inefficiency. An interesting 

finding is that the future values of SOFIX are affected 

mostly by the detail series corresponding to moderate 

frequency scales.  
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