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Abstract 
 

This paper sets out to apply concepts of non linear dynamics theory nai neural networks to the prediction of CDS index 

using Greek, Turkey, Russia, Brazil and China data. The research employs the method of false near neighbors in the time 

series analysis in order to estimate the minimum membedding dimensions of the corresponding strange attractor. To 

achieve out of the sample multistep ahead prediction, a neural net is constructed which architectures based on strange 

attractors topological properties  
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1. Introduction 

Non linear dynamics [1] in combination with neural 

networks had applied in a wide variety of fields, e.g.  

physics, engineering, ecology and economics . The 

economist interest is focus on the ability of forecasting an 

economic time series as the CDS index. In this work we 

have applied non linear time series analysis  in daily closing 

values of Greece,Turkey,Russia,Brazil and China CDS 

index. The daily values of historical data are received from 

Bloomberg Plc. We cover time period  from 2-01-2008 until  

23-06-2010.  We have applied the method of false near 

neighbours [2,3] to evaluate the minimum embedding  

dimension of each the system.  In a second stage using the 

neural network  [4] we achieved an out of sample multi step 

time series prediction. 

 

 

2. Time Series 

 

The  CDS return log  index is presented as a signal x=x(t) 

where x=log(CDS), as it shown at Figure 1 for 

Greece,Turkey,Russia,Brazil and China.. It covers data from 

2-1-2008 to 23-06/2010. The sampling rate is Δt=1 day and 

the number of data are N=645. 
 

 

3. State Space Reconstruction 

From our data we construct a vector iX


, i=1 to N, in the m 

dimensional phase space given by the following relation 

[5,6]: 

 

iX


 = {xi,xi-τ,xi-2τ,…..xi+(m-1)τ}                   (1) 
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Fig. 1 Time series of log CDS 

 

 

 This vector, represents a point to the m dimensional 

phase space in which the attractor is embedded each time, 

where τ is the time delay τ=iΔt. The element xi represents a 

value of the examined scalar time series in time, 

corresponding to the i-th component of the time series. Use 

of this method reduces phase space reconstruction to the 

problem of proper determining suitable values of m and τ. 

The choice of these values is not always simple, especially 

when we do not have any additional information about the 

original system and the only source of data is a simple 

sequence of scalar values, acquired from the original system. 

The dimension, where a time delay reconstruction of the 

phase space provides a necessary number of coordinates to 

unfold the dynamics from overflaps on itself caused by 

projection is called embedding dimension m. 


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3.1 Time delay τ 

Using the average mutual information we can obtaining τ, 

less associated with linear point of view, and thus more 

suitable for dealing with nonlinear problems. The average 

mutual information, which may be expressed by the 

following formula [7,8] 
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where P(xi) represents probability of value xi and P(xi, xi+τ) is 

joint probability. In general, I(τ) expresses the amount of 

information (in bits), which may be extracted from the value 

in time xi  about the value in time xi+τ. As τ, suitable for the 

phase space reconstruction, is the first minimum of I(t). Also 

the absolute minimum of I(τ) is  used for decorrelation time.  

The results are presented at Table.1 

 
Table .1 Absolute minimum of Average mutual information 

 
Countries First minimum of I(t) Absolute minimum of 

I(τ) 

Greece 3 45 

Turkey 1 48 

Russia 3 35 

Brazil 2 39 

China 1 39 

 

3.2 Embedding dimension m 
Embedding theorems show that there is always a dimension 

m for which the geometric object formed by iX


 is 

equivalent to the original trajectory.  A technique to estimate 

the optimal delay dimension m is by looking for false 

neighbors in phase space, [9-11]. More specifically, the 

method is based on a fact that when embedding dimension is 

too low, the trajectory in the phase space will cross itself.  If 

we are able to detect these crossings, we may decide whether 

the used m is large enough for correct reconstruction of the 

original phase space (i.e. when no intersections occur) or 

not. When intersections are present for a given m, the 

embedding dimension is too low and we have to increase it 

at least. Then, we test the eventual presence of self-crossings 

again until find a characteristic embedding dimension at 

which the trajectory in the phase space will not cross itself. 

A noise free time series, theoretically, would not have any 

false neighbors for an embedding dimension m larger than a 

minimum value. This minimum embedding dimension  is as 

we said before the  embedding dimension at which the 

trajectory in the phase space will not cross itself. If we 

increase more the embedding dimension and repeat the 

procedure, we would not have any false neighbors.  We 

implement the false nearest-neighbor algorithm in log CDS 

data with delay times according the values of first minimum 

of I(τ) from Table -1 , decorrealation  time  the values of  

absolute minimum of I(t) from Table -1 ,number of 

neighbors equal to 20, and calculating the distance between 

two points, using the Euclidian norm, in order to judge 

whether these points are false neighbors at upper dimensions 

or not. 

The practical realization of the described method is 

based on testing of the neighboring points in m-dimensional 

phase space. Typically, we take a certain amount of points in 

the phase space and find the nearest neighbor to each of 

them. Then we compute distances for all these pairs and also 

their distances in (m+1)-dimensional phase space. The rate 

of these distances is given by 
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where 
 mX i



  represents the reconstructed vector as 

described in eq. (1), belonging to the i-th point in the m-

dimensional phase space and index n(i) denotes the nearest 

neighbor to the i-th point. If P is greater than some value 

Pmax, we call this pair of points false nearest neighbors (i.e. 

neighbors, which arise from trajectory self-intersection and 

not from the closeness in the original phase space). In the 

ideal case, the value of m is found when the number of false 

neighbors falls to zero. For this purpose, we compute the 

rate of false nearest neighbours in the reconstructed phase 

space using the formula 

 

Aminmi RXX    )(      (3) 

 

where RA is the radius of the attractor, 
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is the average value of time series. 

 

When the following criterion 

 

maxPP 
        (6) 

 

is satisfied, then it can be used to distinguish between true 

and false neighbours.  The dimension m will be found when 

the false nearest neighbors percentage falls below some 

limit, typically set to 1%, [12], and, thus, by choosing 

Pmax=10 and using Matlab code we finally calculate the 

quantity P. The so obtained results are shown in Fig. 2 

indicating that the application of the FNN method yields a 

minimum embedding dimension m equal to 5,4,5,4,5  for 

Greece, Turkey,Russia,Brazil and China 
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Fig.2 Percentage of false nearest neighbors number FNN vs. m 
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4. Time series prediction 
 

The neural network model is especially useful if the time 

series show non-linear patterns. In emerging markets, the 

returns on financial instruments have non-linear behaviors. 

Additionally, the entropy in the emerging markets are 

required a special examination by non-linear models. Thus, 

to examine the performance of the neural networks models 

efficiently, emerging markets data is used. For this purpose 

we construct a backpropagation network [4, 13, 14] that 

consists of 1 input layer 2 middle or hidden layers and 1 

output layer. The input layer has number of  neurons equal 

to the value of absolute minimum of I(t), the 1
st
 hidden layer  

has the same number of neurons as the input layer the  2
nd

  

middle layer has 4m neurons as a rule of thumb . We choose 

the input and 1
st 

 hidden  layer to have this number of  inputs 

to avoid temporal correlation, and because the  attractor is 

embedded at a m phase space  the last hidden layer has 4m 

neurons . As an example for Greece, beginning with the first 

set of inputs x1,x2,x3…x45  the  output is the x46. Then 

with an iterative process we attempt to predict the next 20 

values until x66. We repeat the process for all training sets.  

We train the network with a training set of  600 exemplars 

using the 70% of each data set. The learning rate β=0.05 and 

the momentum α=0.5[4]. Each   network was training  for 

100000 epochs  After 100000 epochs the training mean 

square error was ,MSE=10
-6

. We applied the same procedure 

for CDS index for the other countries too. In figure 3  in 

sample  actual and predicted values during the learning 

process are presented. While in figure 4 out of sample actual 

and predicted values are presented using the multistep 

iterative prediction process 
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Fig.3 In sample  actual and predicted values during the learning process 
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Fig.4 Actual and predicted out of sample predicted values 

 
 
 
5. Conclusion 

 
In this paper, we use a non linear analysis in combination 

with neural networks to predict the log CDS index for 

various countries. After estimating the minimum embedding 

dimension for each system, we point out that the systems are 

chaotic with high dimensionality. Based on  the systems’ 

strange attractors reconstruction we construct a 

backpropagation neural network with 2 hiddel layers. We 

achieved a reliable 10 time steps out of sample prediction. 
The empirical results can be used in economic prediction 

and trading purposes. Firstly, the emprical evidence can be 

used in practice to estimate the credit risk premiums of the 

countries. CDSs are used as risk premium priced by the 

markets. An efficient and correct prediction of CDS values 

will enable to the economist to have quantitative information 

on default risk in an economy. They can be used for country 

risk pricing, economic modelling and ratings. In the practical 

finance, the CDSs are traded in the markets. Thus, predicting 

future values of CDS has a potential earning opportunity for 

the market participants. 
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