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Abstract 

 
In this report the dynamic behaviour of a nonlinear finance chaotic system was modeled by an electronic circuit and its 

behaviour was studied by means of electronic circuit simulation tools. A recently new proposed finance system is used. 

For this reason, a totally different approach in the study of its dynamic behaviour by using the bifurcation diagram is 

followed, in regard to previous work. The numerical tools of this approach were not only the bifurcation diagram, but 

also the maximum Lyapunov exponents and the phase portraits. Various phenomena concerning the chaos theory, such 

as the route to chaos through the mechanism of period doubling, internal and boundary crisis and the coexistence of 

attractors, were observed. 
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1. Introduction  

 

Research activities in various fields of natural sciences, 

confirm the fact that nonlinear systems, exhibiting chaotic 

behaviour, have triggered investigation on related 

phenomena [1-4]. This is due both to rich dynamics and 

sensitivity on initial conditions that nonlinear systems 

demonstrate. Chaotic phenomena have also been observed in 

Economics by the middle of 80s. Since then and especially 

the last few years a scientific field namely Econophysics, 

provides an alternative approach, aiming to study the 

particularly complex dynamics of real economic systems. In 

this direction, researchers are trying to explain the main 

features of economic theory such as structural changes, 

irregular (erratic) micro- and macro-economic fluctuations.  

In order to fix an economic model, economists take into 

consideration, in a first step, only endogenous variables. This 

way the behaviour of the economic model is simplified. The 

absence of external excitation in such a model is analogous 

to an autonomous electronic circuit.  Then the economic 

model is enriched with exogenous variables, describing 

forces not directly related to the economic model, such as 

political events, physical disasters etc. The introduction of 

external excitation is analogous to a non-autonomous 

electronic circuit. Therefore, complexity of these models 

makes accurate economic forecasting very difficult.  

In many fields of economics such as funding, stocks and 

social economics, the diversity and complexity are unfolded 

in the internal structure of models that interact with external 

drives, due to the interaction of nonlinear factors (economic 

or social) with all kinds of economic problems. This was the 

main reason for the introduction of nonlinear dynamics to 

the study of economic models. As examples of nonlinear 

systems used in economic models, are the well-known van 

der Pol model [5, 6] and others [7-11]. 

 It is known, that nonlinear electronic circuits have been 

used extensively for modeling and simulating the dynamic 

behaviour of interdisciplinary nonlinear systems [12-15]. 

The aim of this work is to examine the dynamic behaviour of 

a finance model from an electronics engineer point of view. 

So, for this reason, a recently newly proposed finance 

system which demonstrates chaotic behaviour, for specific 

values of its parameters [16], is used. An analog electronic 

circuit emulating its behaviour is proposed and its rich 

dynamic behaviour is studied by means of electronic circuit 

simulation tools, such as PSpice. 

 

 

2. The Finance Chaotic Model  

 

Recently, a third-order dynamical model, describing a 

finance system, was reported [10, 11]. The model describes 

the time variations of three state variables, namely the 

interest rate X, the investment demand Y, and the price 

index Z. This nonlinear finance chaotic system is described 

by the following set of differential equations:  
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Parameters α, b and c stand for: the saving amount, the 

cost per-investment ratio and the elasticity of demand of 
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commercial markets, respectively. All three parameters 

possess a positive value (α ≥ 0,    b ≥ 0, c ≥ 0). 

 Under the linear transformation x(t) = X(t),  

y(t) = Y(t) – 1/b, z(t) = Z(t), equation system (1) turns into 

equation system (2) [16]. 
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Parameter e, in this work, is defined as follows: 
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            (3) 

 

This is a mere difference between the equation system (2) 

and the corresponding equation system presented in [16]. 

Also, in [16] the long-term dynamical behaviour of the 

finance chaotic system (2) was studied mainly by dividing 

the system into two subsystems. Here, a more general 

approach of the dynamic behaviour, based on the analysis of 

the produced bifurcation diagram of the specific system (2) 

is followed, in order to model the system with an electronic 

circuit by using well-known electronic circuit simulation 

tools. Therefore, a dynamical analysis of the system (2), such 

as symmetry and equilibrium points, is followed. Also, in the 

next section the nonlinear circuit which modeled the finance 

chaotic system is studied.  

Regarding the dynamic behaviour of the nonlinear 

finance system described in Eq. (2), the following should be 

highlighted: This system remains invariant under the 

transformation (x, y, z) → (–x, y, –z), for any arbitrary 

parameters e, b, c, indicating that the finance chaotic system 

(2) is symmetric with respect to the y-axis, that depicts 

normalized investment demand.  

According to the value of the expression (ec – 1), the 

resulting system (2) possesses the following equilibrium 

points: 

 If ec – 1 ≤ 0, the system has only one equilibrium point: 

S1(0, 0, 0). 

 If ec – 1 > 0, the system has three equilibrium points: 

S1(0, 0, 0), 
   
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3. The Proposed Circuit 

 

The circuit topology that was adopted in order to realize the 

equation set (2), is presented in Fig 1. Two multipliers U1, 

U2 (AD633JN) and four identical operational amplifiers U3, 

U4, U5, U6 (LF411), were used. In the equation set (2), 

parameters e, b and c were defined as follows: 
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The circuit element values were: R1 = 1kΩ, R2 = 10kΩ,  

R3 = 100kΩ and C = 10nF, while RX was varied. 

Consequently, the parameter values were e = 10, b = 0.1, 

while c served as the control parameter.  

Finally, the power supplies for all the ICs used were 

±15V. It should be mentioned that the signals x, y, and z 

represent the voltages at the outputs of the operational 

amplifiers U3, U4 and U5, respectively (Fig 1). 

 

 

 
Fig. 1. The proposed nonlinear circuit emulating the 

nonlinear finance system 

 

 

4. Simulation Results 

 

In order to study and illustrate the global dynamic behaviour 

of the proposed nonlinear electronic circuit of Fig 1, and 

consequently the dynamics of the corresponding finance 

system, numerical simulation of system (2) was used, by 

employing a fourth-order Runge - Kutta algorithm. 

In Fig 2 the bifurcation diagram of y versus c 

(bifurcation parameter) and the corresponding diagram of 

maximum Lyapunov exponent versus c, are presented, 

depicting the periodic and chaotic regimes, for the finance 

system (2). These diagrams were numerically produced by 

decreasing parameter c, beginning from c = 1.500 to  

c = 0.500 with a step Δc = 0.001 and a time step Δt = 0.001, 

using the Poincare section at x = 0. Initial conditions were 

set to (x0, y0, z0) = (3, 2, 1). The maximum Lyapunov 

exponent diagram was calculated by employing the Wolf et 

al method on the time-series of y(t). According to the 

numerical analysis, when the maximum Lyapunov exponent 

is positive, the system (circuit) is considered to operate in a 

chaotic mode, while when the maximum Lyapunov 

exponent is zero the system (circuit) turns to a periodic state. 

By choosing certain values of parameter c from various 

regions of the bifurcation diagram, the proper value of the 

involved resistor RX was determined. Then the behaviour of 

the nonlinear circuit was further studied by employing the 

electronic circuit simulation program PSpice. In detail, 

phenomena of the finance system, related to the nonlinear 

dynamic theory, are discerned in the bifurcation diagram of 

Fig 2.  
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Fig. 2. Bifurcation diagram of y versus c, for e = 10, b = 0.1. 

 

 

 The first observed phenomenon is the well-known period 

doubling route to chaos. As the parameter c is decreased 

starting from c = 1.500, the system remains always in a 

period-1 steady state (Fig 3a) until c = 1.205. Then the 

circuit period doubles (1.205 ≥ c > 1.175), as it is shown in 

Fig 3(b). In the region 1.175 ≥ c > 1.168 (Fig 3(c)) it doubles 

its period again (period-4). Finally the circuit operation, 

enters a chaotic mode, as shown in Fig 3(d). 

 

 

 
  (a)                  (b) 

 
  (c)                 (d) 

Fig. 3. Phase portraits showing the route to chaos through the 

mechanism of period doubling, for   e = 10, b = 0.1 and (a) c = 1.300 
(period-1 state), (b) c = 1.190 (period-2 state), (c) c = 1.170   (period-4 

state) and (d) c = 1.158 (chaotic state). 

 
 

For c < 1.123, the system’s attractor remains chaotic, but 

now comprises a much wider area that contains the smallest 

previous one. This change is accomplished by undergoing 

through a phenomenon known as internal crisis [18]. In Fig 

4 the expanded chaotic attractor for c = 1 (RX is adjusted to 

10kΩ), is shown. The 3D attractor of Fig 4(a) looks like a 

“fluttering butterfly”, and it is clear that the dynamics of the 

system, in this chaotic region, are quite more complex. In 

Fig 4(b)-4(d), three phase portrait projections in 2Ds, are 

shown; while in Fig 5 the corresponding time-series of 

signals x, y, and z, further confirmed the circuit chaotic 

behaviour and pro rata of the finance system (2) (for e = 10, 

b = 0.1 and c = 1).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 4. (a) 3D attractor (b) y vs x, (c) z vs x and (d) z vs y, for e = 10, b 
= 0.1 and c = 1. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. The chaotic time series for e = 10, b = 0.1 and c = 1, of (a): x(t), 

(b): y(t) and (c): z(t) 

 

For c = 0.606 an interesting phenomenon is observed in 

the bifurcation diagram (Fig 2), namely boundary crisis. The 

system undergoes an almost abrupt transition from chaos to 

a periodic state (period-1). The corresponding circuit phase 

portraits of this periodic state, for c = 0.6, just below the 

critical point, are shown in Fig 6. 

Finally, the phenomenon of coexistence of attractors is 

investigated. In Fig 7 the phase portraits for e = 10, b = 0.1 

and c = 1.4, which were produced for two sets of initials 

conditions with opposite signs for x and z, are shown. Two 

symmetrical, with respect to the y-axis, period-1 limit 

cycles, appear in this Figure. This is a consequence of the 

characteristic that the system remains invariant under the 

transformation (x, y, z) → (–x, y, –z), as indicated. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Phase portraits of the system, which was produced by PSpice in: 
(a) y vs x plane, (b) z vs x plane and (c) z vs y plane, for e = 10, b = 0.1 

and c = 0.6. 

 

 

 
Fig. 7. Phase portraits in y vs x plane, for e = 10, b = 0.1 and c = 1.4, 
with two different sets of initial conditions, (x0, y0, z0) = (3, 2, 1) with 

black line and for (x0, y0, z0) = (–3, 2, –1) with red line. 
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5. Conclusions 

 

In this paper, the dynamics of a nonlinear system, describing 

the behaviour of a finance model, were investigated. The 

system is a newly proposed one and it demonstrates chaotic 

behaviour for specific values of its parameters. The global 

dynamical behaviour of the system was observed by using 

the bifurcation diagram, in order to find out the regions of 

chaotic or periodic behaviour. The study of the system’s 

behaviour was carried out both by numerically solving the 

differential equations (2) and by applying PSpice simulation 

on a circuit. We propose here that this new system emulates 

a specific finance system behaviour. In this circuit two 

multipliers were used, to implement the nonlinear terms of 

the system.  

Both numerical solutions as well as electronic circuit 

simulation, revealed the rich chaotic dynamics of this 

finance system. Very interesting phenomena were observed. 

The well-known route to chaos through period doubling is 

the first one. Internal and boundary crisis phenomena were 

also observed. Finally, the coexistence of attractors, which is 

a consequence of the endogenous characteristic that the 

system remains invariant under the transformation  

(x, y, z) → (–x, y, –z), was confirmed. 
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