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Abstract 

 
The task of predicting accurately the cost required for the completion of a new software project is a challenging issue in 

the Software Cost Estimation area, since it is closely related with the activities of project management and the wise 

decision-making of organizations in order to bid, plan and budget a forthcoming system. However, the accurate 

prediction of the cost is often obtained with great uncertainty and for this reason there has been noted a lack of 

convergence in experimental studies. The main reason for the discrepancy can be derived from the inherent characteristic 

of prediction methodologies, since they produce point estimates without taking into account the risk covering the whole 

process. In this study, we propose a statistical framework, so as to focus on the construction of Prediction Intervals 

which provide an “optimistic” and a “pessimistic” guess for the true magnitude of the cost. The proposed framework that 

incorporates different accuracy indicators, formal hypothesis testing and graphical inspection of the predictive 

performance is applied on a dataset with real software projects.  

 
 Keywords: Software Cost Estimation, Prediction Interval, ARPI, Estimation by Analogy, Ordinary Least Squares Regression. 
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1. Introduction  

 

Judging by reports from everyday practice and findings in 

the literature, software has become one of the most 

important parts of our lives, whereas on the same time it has 

also turned into the most expensive component of computer 

systems. Due to the abovementioned facts, Software Cost 

Estimation (SCE) is considered as one of the most critical 

phases in planning, scheduling and risk management of 

software projects and has attracted the interest of many 

researchers during the last decades [1]. Generally, SCE is the 

process of assessing the overall expense of software in terms 

of money, effort and time.  

The economies of software projects play a significant 

role to both developers and customers, since they are the 

basis of generating request for proposals, contracts 

negotiations, scheduling, monitoring and controlling the 

whole process of development [2]. The underestimation of a 

project may affect the earnings of the development 

organization leading to wrong managerial decision-making 

with systems that exceed their budgets and delays of the 

deliverables. On the other hand, overestimating the costs can 

lead to the cancelling and loss of a contract, since too many 

resources result in not winning the contract. 

Despite the evolutionary introduction of many prediction 

methodologies ranging from expert judgement techniques to 

algorithmic and machine learning models, the findings are 

associated with inconsistencies regarding the superiority of a 

technique over another (see for example [3]). Although the 

researchers strive to indentify the factors for the lack of 

convergence in experimental studies, it seems that they do 

not take into account an inherent limitation of prediction 

systems that produce estimates which are expressed as single 

numbers (point estimates) without considering the 

uncertainty and risk when estimating a single value of cost 

[4].  

Hence, the estimation of a Prediction Interval (PI) 

consisting of a lower and upper limit between which the 

future value expected to lie with a predefined probability, is 

a more realistic approach, especially from a project 

manager’s point of view. Forecast practitioners in other 

applied areas often face a similar quandary and so most 

managers do realize the importance of providing PIs instead 

of a single value of estimate. Although there is an imperative 

need for the construction of reliable and accurate PIs in SCE 

([4], [5] and [6]), the topic of the comparison of PIs has not 

attracted much of the interest of the research community, 

yet.  

Our aim is therefore to deal with a critical research issue 

in SCE concerning the simultaneous comparison of PIs 

derived from alternative prediction models. More precisely, 

we examined the predictive power of four models over a 

public domain dataset. Usually interval estimates are created 

during the point estimation process by computing a PI for 

the prediction. Another alternative is to predefine the 

intervals and then to use a model that predicts in which of 

the intervals the cost will fall. The comparison of PIs for the 

alternative models is based on the well-known hit-rate, the 

measure of Actual effort Relative to PI (ARPI) that inspects 

how the actual cost values are distributed relative to the cost 
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PIs and analyzes the bias in the estimated uncertainty 

distribution [5] and a width analysis of PIs through formal 

statistical hypothesis testing. Finally, we recently proposed a 

measure that generalizes the hit-rate taking into account the 

similarity and width of PIs [6]. 

The rest of the paper is organized as follows: In Section 2, 

we present the experimental setup of the study concerning 

the alternative prediction models, the evaluation of PIs and 

the indicators of the predictive power. In Section 3, we 

present the experimental results and finally, in Section 4 we 

conclude by discussing the results. 

 

 

2. Experimental Setup  

 

This section provides information concerning the 

comparison framework and the experimental setup of the 

study. More precisely, we give certain descriptions about the 

alternative prediction models, the construction of PIs and the 

measures evaluated for the comparison purposes. 

 

2.1 Comparative Prediction Methods 

 

In this study, we decide to select different methods covering 

a part of the distribution of the proposed methodologies 

appeared so far in the literature of SCE [1]. The selected 

methods can be grouped into two main categories that are i) 

methods that produce point estimates accompanied by 

prediction intervals and ii) methods that estimate the cost 

within predefined intervals. Due to the space limitation of 

the study, we do not give a detailed description of the 

prediction models, since they are well-established methods 

and have been already applied in SCE. On the other hand, in 

Table 1, we present a brief and a more abstract portrayal of 

the general idea for each method. 

 

2.2 Evaluation of Prediction Intervals 

 

From what we have already mentioned, it is clear that two of 

the comparative prediction models (CART and NB) classify 

a project in a predefined interval. In order to apply these 

techniques, we have to compute a new variable that 

categorizes the dependent variable’s effort, measured on an 

ordinal scale. For this reason, we compute the quartiles of 

the empirical distribution of effort. Finally, four interval 

categories are generated implying that all categories have 

almost the same probability to contain the actual effort of a 

new project. On the other hand, the rest methods result in a 

point estimate, so there is a need to briefly describe how we 

can derive a PI from point estimates in regression-based 

techniques.  

The technique used is known as the leave-one-out cross-

validation (LOOCV) [6], i.e. after removing a project from 

the dataset, a model for each prediction technique is 

generated using all the remaining projects and this in turn is 

utilized to provide estimation, along with a PI for the cost 

value of the removed project. As far as the parametric OLS 

concerns, it is known from the theory that a PI can easily be 

evaluated by explicit formulae [12]. In contrast, there is no 

such way to evaluate PIs for the case of the non-parametric 

EbA model, and therefore a simulation technique, namely 

non-parametric bootstrap, is adopted [5]. The method is 

based entirely on the empirical distribution of the dataset 

without any assumption on the population distribution, 

whereas the rationale behind the procedure is the generation 

of a large number of independent samples drawn with 

replacement from the original sample.  

 

 

Table 1. Description of prediction methodologies 

Methodology General Idea  

Methods that produce point estimates accompanied by 

prediction intervals  

Ordinary 

Least 

Squares 

Regression 

(OLS) 

Explains the relation between several 

independent variables (cost factors) and a 

dependent variable (effort) in the form of a 

parametric linear relationship (see 

indicatively, [7]). Since the variables are 

usually non-normally distributed, they need 

some transformation (logarithmic) in order 

to obtain a valid linear model. In addition, 

in order to handle mixed data with 

categorical and continuous variables, we 

replace the categorical variables by binary 

(or dummy) variables. 

Estimation by 

Analogy 

(EbA) 

Mimics the human instinctive decision-

making by comparing with similar cases. A 

type of non-parametric regression 

procedure, where the unknown values of 

the dependent variable are estimated by the 

known values, of the same variable, 

corresponding to neighbours (analogies) of 

the estimated case [10]. Analogies are 

found through the evaluation of a prefixed 

similarity (or dissimilarity) criterion of 

cases, based on the independent variables.  

Methods that estimate the cost within predefined intervals 

Classification 

and 

Regression 

Tree (CART) 

A statistical and machine-learning 

procedure widely used in predictive 

modelling for building classification models 

with a tree-based structure [9]. The CART 

model consists of a hierarchy of decisions, 

whereas the algorithm used operates by 

choosing the best variable for splitting data 

into two groups at the root node. It can use 

any one of several different splitting 

criteria, all producing the effect of 

partitioning the data at an internal node into 

disjoint subsets in such way that the class 

labels are as homogeneous as possible. This 

splitting procedure is then applied 

recursively to the data in each of the child 

nodes. A greedy local search method to 

identify good candidate tree structures is 

used. 

Naïve Bayes 

Classifier 

(NB)  

A simple probabilistic classifier based on 

applying Bayes' theorem with strong 

independence assumptions and despite this 

fact, in practice NB often competes well 

with more sophisticated classifiers [10].       

 

 

2.3 Comparison of Prediction Intervals  

 

As the main scope of the study is the comparison of PIs, in 

this section, we present the way that the predictive 

performance is evaluated in the experiment. Firstly, the 

performance is computed via the hit-rate that is the most 

known accuracy indicator defined as the percentage of the 
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total number of correct predictions to the total number of 

projects in the dataset. Despite the wide applicability of this 

measure, we have to point out that hit-rate does not take into 

account the width of the PIs and the overlapping part of PIs 

obtained by two comparative techniques.  

Jorgensen et al. [5] proposed the utilization of the Actual 

effort Relative to PI (ARPI), a measure that is able to reveal 

the potential bias in the estimated uncertainty distribution 

(Eq. 1). The ARPI provides values close to -0.5 and 0.5 

when the actual effort is close to the estimated lower and 

upper bounds, respectively, and equals 0 when the actual 

effort corresponds to the midpoint of a PI. An ARPI value 

outside the interval [-0.5, 0.5] means that the actual effort is 

outside the effort PI.  

 

_ inti i

i

i i

Act PI midpo
ARPI

upper lower





     (1) 

 

where  

 

_ int
2

i iupper lower
PI midpo


  

 

Recently, we proposed a new measure, namely adjusted 

hit-rate that can be considered as the generalization of hit-

rate taking into account not only the inclusion of the actual 

value in an interval, but also the similarity and width of the 

comparative intervals [6]. Supposing that we have to 

compare two intervals ],[ 11 baA   and ],[ 22 baB  , 

there are four possible cases (Table 2) concerning their 

overlapping part: i) the intervals do not have any 

overlapping parts, i.e. their intersection is the empty set 

( BA ) (Table 2a), ii) the intervals have an 

overlapping part, i.e. their intersection is not an empty set 

(  12 ,baBA  ) (Table 2b), iii) one of the 

intervals is contained within the other interval, i.e. their 

intersection is the entire “smaller” interval 

( ],[ 22 baBBA  ) (Table 2c), and iv) the two 

intervals have the same lower and upper bounds ( BA  ) 

(Table 2d). 

Based on the relative positions of PIs, we can give a 

score to each PI using one of the equations described in 

Table 2. The general idea of the proposed measure is to give 

an advance to the correct predictions through weights but 

also to take into consideration the overlapping and the width 

of PIs. The final score can be summarized through the mean 

value of these scores. 

 

 

Table 2. Adjusted hit-rate scores for the comparison of PIs 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 A B A B A B A B 
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
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
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or 
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


 

0 impossible 
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221
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 1  1 1 

BxAx   0 0 0 0 0 0 0 0 

 
 

 

 

 

3. Experimentation 

 

The publicly available dataset used in our experimentation 

comprises 77 completed software project data from a 

Canadian Software house [12] with both continuous and 

categorical variables, whereas the dependent variable is the 

actual effort.  

From the measures presented in Table 3, we can observe 

that the OLS gives the highest value (98.70%) and CART 

the smallest value (50.65%) of hit-rate indicators, 

respectively. Thus, based solely on hit-rate, a practitioner 

would conclude that OLS is the best prediction technique for 

PI estimates. 

 

 

Table 3. Comparison of PIs 

 Hitrate MedianARPI 

OLS 98.70% -0.18 

EbA 63.64% -0.08 

NB 51.95% 0.10 

CART 50.65% -0.16 

 

 

Table 4. Comparison via adjusted hit-rate measures 

 OLS EbA NB CART 

OLS - 0.45 0.53 0.54 

EbA 0.62 - 0.44 0.46 

NB 0.44 0.34 - 0.49 

CART 0.41 0.34 0.51 - 

 

 

 In order to better illustrate the predictive power of the 

competitive models, in Figure 1 we present the actual 

lnefforts of the dataset along with the 95% PI by (a) OLS 

and (b) EbA and the predicted class of (c) NB and (d) CART 

models, respectively. For better interpretation, we present all 

the lower and all upper bounds connected with a line 

forming in every graph a prediction zone, whereas due to the 

high variability of the actual cost values, we decide to 

transform the y-axis to the natural logarithmic scale, so as to 

better illustrate the differences between the comparative 

models. Finally, the projects are sorted in ascending order 

according to the actual dependent variable, so the x-axis 

represents the ranks of each project in this order. As we can 

see from figures, the parametric OLS model provides in 

general extremely wide PIs. This is not true for the case of 

non-parametric EbA model, since it presents the narrowest 

PI-zone, which is significantly better than the corresponding 

PIs of the other methods, with a quite reasonable and high 

hit-rate. On the contrary, NB and CART, which estimate the 

cost within predefined intervals, present generally quite 

rough zones, whereas OLS and EbA evaluate more smooth 

PIs. Therefore, we should take a more careful examination 

of the predictive performances of the competitive 

techniques.  
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Fig. 1. (a) 95% prediction interval for OLS, (b) 95% prediction interval for EbA, (c) predicted class for NB and (d) predicted class for CART  

 

 

Concerning the overall performance of the models via 

ARPI measure, the researchers [5] propose the utilization of 

the MedianARPI (Table 3). In our dataset, three of the 

models present negative values, so the actual effort is 

generally, closer to the estimated lower bounds for these 

methods. Additionally, EbA seems to produce the least 

biased PIs, since the MedianARPI of the abovementioned 

method is the closest to zero value. The second best method 

is NB, whereas OLS presents the most biased PIs. However, 

a single measure is just a statistic and as such contains 

significant variability. Thus, when we compare models 

based solely on a single value we take the risk to consider as 

a significant difference which in fact may be not so 

significant. In order to remedy this issue, we can test the 

significance of the differences using the non-parametric 

Wilcoxon signed rank procedure. The Wilcoxon test 

indicates a statistically significant difference for all pair-wise 

comparisons except two cases (EbA-CART and NB-CART).  

On the other hand, having in mind that there are two 

crucial issues regarding the comparisons of PIs, which are 

whether the actual values are contained within the intervals 

and the similarity of PIs with respect to their overlapping 

part and their widths, we should take a more careful 

examination of the PIs through the proposed adjusted hit-

rate indicator (Table 4). Indeed, the adjusted hit-rates of EbA 

show that the methodology dominates in terms of efficiency 

meaning that the PI can be narrower without losing hit rate. 

For example, the comparison of EbA-OLS models 

demonstrates that the score of EbA is 0.62 compared with 

the value of 0.45 for OLS. This means that although OLS 

presents higher value of the simple hit-rate indicator, the 

adjustment through the new measure incorporates further 

information concerning the power of EbA model. Taking 

into account the Wilcoxon tests, the results reveal that there 

are three methods with similar performances {EbA, CART, 

NB}, which in turn outperform OLS.  

 

4. Conclusions 

 

The paper suggested a comprehensive framework for 

comparisons between models built from different prediction 

techniques presenting ways of measuring and comparing 

interval prediction accuracy. Although a plethora of studies 

indicates the requirement that each estimation technique 

should be accompanied with a prediction interval, since they 

can play a critical role in the well-balanced management and 

planning of a software project, there has been noticed a little 

concern regarding the formal comparison of PIs. In this 

study, the comparison was conducted through the usage of 

the well-known hit-rate indicator and the Actual effort 

Relative to PI measuring the bias of the interval. Finally, as 

the crucial issue of a comparison of two alternative 

prediction interval techniques is the similarity of their 

intervals, we highlight how a recently new measure taking 

into account the width and overlapping points of the 

intervals can constitute a well-defined methodology in order 

to assess the superiority of one model against the other. 

Summarizing the findings of the experimentation, the 

constructed PIs of four comparative methods revealed that 

although OLS presents an especially high value of hit-rate 

measure, it seems not to be the best prediction interval 

technique regarding the width and the overlapping points 

compared with the PIs of the other models. On the contrary, 

the EbA model achieves to produce the narrowest PIs and 

presents statistically significant differences when the 

adjusted hit-rate measure is evaluated for the comparison 

purposes. Finally, regarding the ARPI measure, EbA 

attained the least biased PIs, whereas in the case of the OLS, 

the measure indicated biased predictions. Concerning the 

comparison between the techniques that produce point 

estimates accompanied by prediction intervals and the 

techniques that estimate the cost within predefined intervals, 

although the latter form does not result in smooth PIs, it 

produces generally accurate intervals. 
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